Computer
Literacy
Skills

GRAPHICS AND
- ANIMATION

ON THE

ATARI

; 800, 400, 1200XL.,,
800XL, and 600XL

CHRISTOPHER
- LAMPTON

GRAPHICS
AND
ANIMATION
ON THE
ATARI

800, 400, 1200XL,,
800XL., and B00XIL.

BY CHRISTOPHER LAMPTON

A COMPUTER
LITERACY SKILLS BOOK

The words computer graphics and ani-
mation conjure up magical images of
arcade games, bright colors, flashing
lights, and wonderful shapes.

This book shows you how to create
graphics on the most popular Atari com-
puters, which excel at producing color
graphics. Some knowledge of the BASIC
language is needed, but you needn’t be
an expert programmer. -

You’ll learn how to create graphics
using text and bitmap modes, as well as
using sophisticated techniques in which
you will create your own character sets.
Step-by-step programming instructions
are blended with careful explanations of
the internal workings and architecture of
the computer.

Numerous activities give you a chance
to try nearly every technique presented.
Suggested projects are given at the end of
most chapters, and a comprehensive pro-
gram listing will enable you to easily
create your own character set.

So why depend on commercial pro-
grams to make your life more graphic and
animated? Let Chris Lampton help you
learn how to create your own games, de-
signs, and charts.

800, 400, 1200XL,,
S800XL., and GO0OXL

by Christopher
Lampton

A GROLIER COMPANY

A Computer Literacy Skills Book
FRANKLIN WATTS 1986
New York London Toronto Sydney

Original designs created by Grant Geyer,
Marshall Geyer, and Jonathan Halpern,
who are students in Staten Island, New York.

Photographs courtesy of Ira Schulman: vi, 4, 8, 11,
12, 15, 26, 27, 35, 37, 52, 57, 78, 81, 96, 99, 108;
Atari Inc.: p. 3 (top); Electronic Arts: p. 3 (bottom);
Atari Inc. and Star Wars: p. 59.

Library of Congress Cataloging in Publication Data

Lampton, Christopher.
Graphics and animation on the Atari.

(A Computer literacy skills book)

Bibliography: p.

Includes index.

Summary: Instructions for creating simple and

advanced graphics using BASIC on the Atari computer.
Includes suggestions for projects.

1. Atari computer—Programming. 2. Computer graphics.

3. BASIC (Computer program language) [1. Atari computer
—Programming. 2. Computer graphics. 3. BASIC (Computer
program language) 4. Programming languages (Computers)
5. Programming (Computers)] I. Title. II. Series.
QA76.8.A82L36 1986 006.6'765 85-26445
ISBN 0-531-10144-4

Copyright © 1986 by Christopher Lampton
All rights reserved

Printed in the United States of America

6 543 21

U.S. AIR FORCE
BASE LIZRARY FL 4528
MINOT ARG ND 58703-5000

CONTENTS

Introduction 1

Chapter One
Text Modes 5

Chapter Two
Bitmap Modes 20

Chapter Three
Color 37

Chapter Four
Animation 58

Chapter Five
Memory 73

Chapter Six
The Display List 86

Chapter Seven
Character Sets 102

Epilogue 119
Bibliography 120
Index 121

Original designs created by Grant Geyer,
Marshall Geyer, and Jonathan Halpern,
who are students in Staten Island, New York.

Photographs courtesy of Ira Schulman: vi, 4, 8, 11,
12, 15, 26, 27, 35, 37, 52, 57, 78, 81, 96, 99, 108;
Atari Inc.: p. 3 (top); Electronic Arts: p. 3 (bottom);
Atari Inc. and Star Wars: p. 59.

Library of Congress Cataloging in Publication Data

Lampton, Christopher.
Graphics and animation on the Atari.

(A Computer literacy skills book)

Bibliography: p.

Includes index.

Summary: Instructions for creating simple and

advanced graphics using BASIC on the Atari computer.
Includes suggestions for projects.

1. Atari computer—Programming. 2. Computer graphics.

3. BASIC (Computer program language) [1. Atari computer
—Programming. 2. Computer graphics. 3. BASIC (Computer
program language) 4. Programming languages (Computers)
5. Programming (Computers)] I. Title. II. Series.
QA76.8.A82L36 1986 006.6'765 85-26445
ISBN 0-531-10144-4

Copyright © 1986 by Christopher Lampton
All rights reserved

Printed in the United States of America

6 543 21

U.S. AIR FORCE
BASE LIZRARY FL 4528
MINOT ARG ND 58703-5000

The Publisher wishes to
acknowledge the assistance of
Marshall Geyer, Grant Geyer,
and Jonathan Halpern in the
preparation of this book.

— GRAPHICS AND

— ANIMATION
ON THE ATARI

INTRODUCTION

Before words, there were pictures. Primitive men and women
traced beautiful murals on the walls of caves. Children too young
to speak scrawl crayon drawings on paper or any available sur-
face.

There is something in the human mind that responds to pic-
tures as it can never respond to words. Pictures carry information
more efficiently and intuitively (if somewhat less precisely) than
words. A picture is worth a thousand words. Every picture tells a
story. Let me paint you a picture. . . .

The computer, that most modern of information-processing
gadgets, can process pictures as efficiently as it processes words
and numbers, and in much the same fashion. Through computer
programming, the art of writing instructions that can be executed
by a computer, we can “paint” pictures on the computer’s video
display.

Pictures on the video display of a computer are called graph-
ics. This book is about the creation of graphics on the Atari
microcomputers—the Atari 800, 400, 1200XL, 800XL and
600X L computers—using the programming language called Atari
BASIC. It is assumed in the pages that follow that you know
something about programming in BASIC, but not necessarily in
Atari BASIC. No previous knowledge of computer graphics is
required.

(2]
HARDWARE AND SOFTWARE

A computer is a piece of hardware, that is, a physical unit of
machinery. The instructions that we give to the computer are
software, or programs. The distinction between hardware and
software—that is, between the machine and the instructions that
we give to the machine-—may seem obvious now, but later it may
become a little fuzzy.

For instance, graphics are a function of hardware, but we con-
trol them through software. When a computer is built, it is given
certain capabilities, among them (in most instances) the capabil-
ity of producing graphic images on a video display. Though we
can take advantage of these capabilities in our programs, even the
cleverest of programmers cannot stretch these capabilities farther
than the builders of the machine intended them to go, without
first modifying the hardware (not a trivial task). If a computer has
the capacity for producing only low-resolution, black and white
images, we cannot write programs that will produce high-resolu-
tion, color ones.

Fortunately, the creators of the Atari chose to bestow on it
some fairly sophisticated graphics capabilities, including (but not
limited to) the ability to produce high-resolution color images.
The key to these capabilities are a pair of electronic circuits—
microchips, actually—called Antic and GTIA. (On Ataris manu-
factured prior to 1982, the second of these chips is called CTIA.)
Like miniature computers in their own right, these chips analyze
the graphics instructions provided by the programmer and use
them to assemble a video signal that can be sent to the video
display, producing a picture.

As a potential Atari graphics programmer, you might wonder
how we give instructions to Antic and GTIA. The answer
depends on what kind of graphics effect you want to produce, and
how much work you’re willing to put into producing it. It is pos-
sible to *“‘talk” directly to the Antic and GTIA chips with your
programs, telling them exactly what you want them to do; much
later in this book we’ll study techniques for doing just that. In
many instances, however, there will be an easier way.

Every Atari computer leaves the factory with a built-in pro-
gram called the operating system, or OS for short. This program
is actually made up of a number of smaller programs, or routines,
each concerned with input and output, that is, the movement of
data into and out of the computer. Because graphics are a form of
output—the output of pictures to the video display—the OS con-
tains a number of routines for producing graphics. Thus, when we
wish to create graphics in our programs we don’t have to write
out the long series of instructions necessary to persuade Antic or
GTIA to produce the desired effect; we simply tell the OS what

0 . .
42860 "52420

| R\ T)0Y X

S—
Ij- '|.—-"'
i v R

Y it
fllo a

LA BRI

82 ® & "

HEO0R uuNs—x«|

Top: PacMan, the video game that started the
whole graphics craze. Bottom: Electronic Arts’
Pinball Construction Set, a “sophisticated
recreation.”’ Both products make good use

of the Atari’s graphics capabilities.

Original graphics design created on the Atari

we want to do and it in turn relays the proper instructions to the
Atari’s graphic chips. (Actually, because most of our programs
will be written in BASIC, we will give our instructions to another
program called the BASIC interpreter, which in turn will pass the
instructions to the OS, which will then relay the instructions
directly to the appropriate chips. A jury-rigged process—but it
works!)

Alas, there is a limit to how much help the Atari OS will give
us. Though it contains some fairly sophisticated graphics rou-
tines, Antic and GTIA can perform some tricks that even the
operating system doesn’t know about. These include some of the
most advanced graphics techniques that the Atari offers us as
programmers. Thus, if we wish to venture out into this territory,
we are on our own. We must talk directly to the graphics chips,
explaining to them each detail of the operations we want them to
perform.

Chapters one through four discuss the relatively “easy” oper-
ations that we can ask the operating system to perform for us.
The next three chapters explain some of the more complex graph-
ics techniques that we can use if we directly manipulate the Atari
hardware. Although some of the advanced techniques may seem
intimidating at first, they are not really so difficult once you
familiarize yourself with a few essential concepts. A knowledge of
these concepts will allow you to produce some spectacular and
effective programs.

it

TEXT

_ —1 MODES

There is a time-honored art known as mosaic, where the artist
creates pictures out of tiny, colored bits of material such as mar-
ble and glass. Though the individual bits of material may be
shapeless and uninteresting—in fact, they may be shards thrown
away by someone else—a skilled artist can fit them together to
form elaborate and beautiful images.

Computer graphics are a kind of mosaic. The material out of
which computer images are formed is neither marble nor glass; it
is the pixel, short for pictorial element. A pixel is simply a point
or rectangle of light on the video display of the computer. As
programmers, we can control (within certain limitations) the
color, position, and even size of the pixels that appear on the
display of our computer. From these pixels we can fashion pic-
tures, in much the same way that the artist builds a mosaic.

That’s really all there is to graphics programming—putting
the proper pixels in the proper positions on the video display. But
your lesson in graphics programming has only just begun. Now
you must learn how to tell the computer where to place pixels on
the video display, a subject that will fill the rest of this book.

THE GRAPHICS MODES

The Atari is a versatile graphics computer. It offers us sixteen
different graphics modes. In each of these modes, there are small

(6l

(and sometimes not so small) differences in the way we design
graphic images. The mode that you choose for your graphics will
depend on the specific kind of graphics you want to produce. In
some instances, we can even use more than one graphics mode at
the same time. (Actually, the number of graphics modes available
depends on when your Atari was built. If it was built before
1982—that is, if it uses the CTIA chip instead of the GTIA
chip—it will have fewer graphics modes available. We will dis-
cuss this problem later in the book, as we examine these “missing
modes.”)

In Atari BASIC, we select an Atari graphics mode with the
statement GRAPHICS. We use this statement like this:

GRAPHICS mode number

where the mode number is a number between 0 and 63, indicat-
ing the graphics mode we wish to use. (Although there are only
sixteen graphics modes, we can use larger numbers to indicate
variations on these basic modes.) The mode number may be writ-
ten as a numeric expression, that is, as a computation (such as 4
+ 6) that evaluates to the proper mode number, or as a BASIC
variable (such as A) equal to the proper mode number.

Roughly speaking, we can divide the Atari graphics modes
into two categories: text modes and bitmap modes. In a bitmap
mode, we can control the position and color of every pixel on the
screen, as a mosaic artist controls the position of every fragment
of glass or marble in the image that he or she is creating. In a text
mode, we can control only the position and color of predefined
images called characters, as though we were building a larger
mosaic out of smaller mosaics.

When you turn on your Atani computer and enter Atari
BASIC, you are already in graphics mode 0. This is a text mode;
that is, it uses predefined characters. Some of these characters are
designed in the images of the letters of the alphabet, which is
why we can type words and sentences on the screen in graphics
mode 0. Every time we press a key with a letter of the alphabet (or
a numeral or a punctuation mark) depicted on it, the Atari’s oper-
ating system tells the GTIA chip to output a picture of that char-
acter to the video display. Thus, our Atari computer can serve as
a kind of electronic typewriter, though the medium on which it
displays the typed text is a video monitor or television set rather
than a piece of paper.

In graphics mode 0, we can display up to 960 characters on
the screen at one time. These characters are organized into twen-
ty-four rows of forty characters apiece. That is, we can have no
more than forty characters across and twenty-four characters up
and down.

(7]

Though text modes are, as the name implies, intended for the
display of text, we can also use a text mode for creating graphics.
In fact, some of the most interesting graphics displays in this
book will utilize the Atan’s text modes.

EXPLORING THE KEYBOARD

If you have an Atari computer handy, pause now to turn the com-
puter on and prepare it for programming in BASIC, if you have
not already done so. If you have an Atari 400 or 800, without the
letters XL following the name, you must insert the BASIC pro-
gramming cartridge before the computer is ready to be pro-
grammed; if you have an XL Atari, you need only turn the com-
puter on.

The BASIC interpreter—the computer program that reads
our BASIC instructions and translates them into a form that the
computer can understand—will announce its presence by print-
ing the word READY on the screen. Below this word will appear
a nonblinking cursor. You may begin to type instructions.

Before you do so, however, play with the keyboard a little
and watch what happens on the screen as you do so. Occasionally
you will receive some odd messages from the BASIC interpreter,
but you can ignore these. The interpreter simply thinks that
you’re trying to give it instructions, and it is having difficulty
making sense of what you’ve typed.

As noted earlier, pressing a key with a letter of the alphabet or
a numeral or a punctuation mark on it will cause that character to
appear on the display. In addition, certain keys have special uses,
often more than one. The key marked SHIFT, for instance, when
pressed along with a second key, will often change the meaning of
the second key. The key marked TAB causes the cursor to jump
forward several spaces on the screen. The key marked CAPS
allows you to type both upper- and lowercase letters on the
screen. On XL model Ataris, pressing the CAPS key will return
the Atan keyboard to its “normal” state, where only uppercase
letters can be typed. On earlier-model Ataris, pressing the SHIFT
and CAPS keys simultaneously will produce the same result. The
key marked RETURN will produce a carriage return, causing the
cursor to drop from its current line to the left-hand margin of the
following line.

The key marked CONTROL has a very special purpose.
Much like the SHIFT key, it can change the meaning of any key
pressed simultaneously. For instance, when you press the CON-
TROL key, the “<” key becomes a CLEAR key and can be used
to clear the screen. (In this and other multiple keystrokes, press
only the key represented by the symbol within the quotation
marks, not the quotation marks.) Try it and see. Bear in mind,

(8]

however, that both keys must be pressed at the same time to pro-
duce this effect—that is, you must press the CONTROL key and
then press the “ <> key while the CONTROL key is still being
pressed. Similarly, the CONTROL key converts the “>" to an
INSERT key, which will create a space between two existing char-
acters to allow new characters to be inserted.

GRAPHICS CHARACTERS

We can use the CONTROL key to create a limited form of graph-
ics on the Atari screen. For example, press the CONTROL key
along with the T key. The image of a ball will appear on the dis-
play. If you press CONTROL along with the F key, a diagonal
line will appear. Similarly, pressing CONTROL along with the G
key will cause another diagonal line to appear, but with the oppo-
site slant. .

Quite a few of these graphics characters are available on the
Atari keyboard, through the use of the CONTROL key. With a
little imagination, you can combine several of these characters to
form larger characters. Using the slanted lines on the F and G
keys, for instance, it is possible to create diamond patterns on the
screen, or interlocking networks of lines.

Original design created using Atari graphics characters

19

Not every key will produce a graphics character when pressed
along with the CONTROL key. Some keys will produce actions
on the screen, such as the screen clearing and character inserting
we discussed a moment ago. One of the most important of these
““screen actions” is the movement of the cursor. By pressing the
CONTROL key along with the “—" key, the “=" key, the “+”
key, and the “*” key, we can move the cursor up, down, left, and
right, respectively. (For this reason, the designers of the Atari key-
board have placed pictures of tiny arrows on those keys, indicat-
ing the direction that the cursor will move when the key is
pressed along with the CONTROL key.) In this way, we can posi-
tion the cursor precisely where we want it on the screen, before
we begin to type. Using these arrow keys in combination with the
graphics character keys allows us to draw elaborate pictures on
the Atari’s screen.

(The earlier, non-XL Ataris have a special sketchpad mode
activated automatically when no cartridge is present in any of the
Atari’s slots. If you have one of these computers, you may wish to
use the sketchpad mode rather than BASIC for drawing pictures
on the screen. The keys on the keyboard will behave in exactly
the manner described above.)

THE ESC KEY

The ESC key, in the upper left-hand comer of the keyboard, per-
forms a function similar, but by no means identical, to that per-
formed by the CONTROL key. ESC is short for “escape,”
because it allows us to escape the normal function of a key. In
certain instances, pressing the ESC key alters the meaning of the
key pressed immediately after it. (In this case, the keys should not
be pressed simultaneously.) The keys affected by ESC are pri-
marily those that cause actions to take place on the screen, such
as the cursor movement keys. When one of these ‘““action” keys is
pressed immediately after the ESC key, the action will not be
performed as it normally would be; rather, a special graphics
character will be printed on the display.

To demonstrate, press the ESC key, then press CONTROL-
“=" The CONTROL-“=" combination—that is, the simulta-
neous pressing of the CONTROL and “=" keys—ordinarily
moves the cursor down one line, as you saw a moment ago. When
it is pressed immediately after the ESC key, however, the image
of a downward-pointing arrow will appear instead. Similarly,
pressing ESC and then CONTROL-“-> will produce the image of
an upward-pointing arrow, rather than moving the cursor up one
space.

Other keys altered by ESC include CONTROL-“+", CON-
TROL-“*”, CONTROL-“<”, CONTROL-“>" and CON-

[10]

TROL-DELETE. Even the ESC key itself can be altered by the
ESC key. Pressing the ESC key twice in a row produces one of the
most interesting characters in the Atari character set—a kind of
cursive E with a tail. Try it and see.

GRAPHICS

It is all well and good to draw pictures on the Atari video display
using the keyboard, but the purpose of this book is to show you
how to produce graphics using an Atari BASIC program. It is
unlikely that you will want the user of your programs to draw his
or her own graphic images using the keyboard; hence, there must
be instructions in Atari BASIC that can be used to produce the
same kind of effect.

In fact, there are quite a few such instructions. The most
common, and versatile, graphics instruction recognized by the
Atari is the PRINT command. As a BASIC programmer, you are
undoubtedly familiar with the PRINT command as a means of
placing text on the video display. However, it can also be used to
create graphics.

For instance, to create a simple drawing of a fence on the
Atani display, you can type:

PRINT *

then press the W key several times while holding down the CON-
TROL key. Finally, you can add another quote and press
RETURN. A sequence of fencelike graphics characters will be
printed on the display.

In the same way, other graphics characters can be printed
simply by placing those characters in quotes after the word
PRINT. Although we have demonstrated this technique by using
the Atari immediate mode (where instructions are executed as
soon as we press RETURN), we can just as easily place these
instructions in our programs, by preceding the statements with
line numbers.

THE CHARACTER SET

The total set of all characters that can be displayed on an Atari
text screen is called the Atari character set. Obviously, this char-
acter set contains the letters of the alphabet, in both upper and
lowercase, the ten numerals from O to 9, and a handful of punc-
tuation marks. It also includes a bevy of graphics characters.
Although we see these characters on the display as visual
images, they are represented inside the computer as numbers. In
fact, all information is represented inside a computer as numbers.

Complete Atari character set

The numbers used to represent characters inside a computer are
usually called ASCII code numbers. ASCII stands for American
Standard Code for Information Interchange. However, the num-
bers that the Atari uses to represent characters are not always
quite the same as the standard ASCII code; thus, we refer to these
numbers as the ATASCII code.

To determine the ATASCII code for any character in the
Atari character set, we can use the ASC function, like this:

PRINT ASC("A")

If you type this statement and press RETURN, the computer will
respond with the number 65, indicating that the ATASCII code
for the capital letter A is 65. If you had placed the slanted line
character (CONTROL-F) within the quotes rather than the letter
A, the computer would have responded with the number 6, indi-
cating that the ATASCII code for the slanted line character is 6.
You are invited to experiment with other characters, using the
ASC function to determine their ATASCII codes.

Even certain screen actions are assigned ATASCII code
numbers. For instance, moving a cursor up one line is repre-
sented by ATASCII code 28. Clearing the screen is represented by
ATASCII code 125. And so forth. To determine the ATASCII
code for a screen action character, use the ESC method described
earlier to place an image of that character between quotes after
the ASC function. For instance, to determine the ATASCII code
for the CONTROL-“>" combination, type

PRINT ASC("
then press ESC followed by CONTROL-“>"" and add
")

CASTLE
KEYBOARD

Examples of normal and reversed characters and designs

[13]

Finally, press RETURN. The ATASCII code for the CONTROL-
“>* combination (255, as it happens) will be displayed.

THE CHR$ FUNCTION

We can use the ATASCII code numbers to print characters on the
display. To do this, we use the CHR$ function. The CHR$ func-
tion is the opposite of the ASC function. It produces the character
represented by an ATASCII code number. For instance, if we

type :
PRINT CHR$(65)

the capital letter A will be displayed. If we type
PRINT CHR$(6)

the slanted line character will be displayed.

Interestingly, adding 128 to the ATASCII code of a character
(assuming that the code was less than 128 to begin with) will
create a negative image of the character. We call these negative
characters reversed characters. To see the reverse of the letter M,
for instance, you could type

PRINT CHR$(ASC("M") + 128)

You can also produce reversed characters by pressing the key in
the lower right-hand corner of the keyboard, which automatically
puts the Atari in reversed text mode.

Which method you use to print characters in your pro-
grams—typing the graphics characters from the keyboard or
using the CHRS function—will vary according to circumstance
and personal taste. However, in this book we will use the CHR$
method to print all graphics characters and screen action charac-
ters, because this method is likely to produce less visual confu-
sion as you type the program listings provided here. However,
you may use either method in the programs you write yourself.

LARGE TEXT MODES

Graphics mode 0 is not the only text mode offered by the Atari.
Two others are graphics modes 1 and 2. As you can probably
deduce, we can enter these modes by typing

GRAPHICS 1

and

[14]
GRAPHICS 2

respectively.

Although these additional modes are also used for displaying
text, there are certain differences between the way text is dis-
played in these modes and the way it is displayed in mode O.
Before we try out these new modes, press the RESET key at the
upper right-hand corner of the Atari console. This will clear out
any side effects left by previous graphics instructions. (If you
have just turned on the computer, this won’t be necessary.)

Now type

GRAPHICS 1

and press RETURN. The display should turn black, except for a
small section at the bottom of the screen that will remain the
same blue color that you saw while in mode 0. The word READY
and a cursor should appear in the blue section of the display. The
black portion of the display is in mode 1. The blue portion of the
display is in mode 0. Because the display is in two modes at once,
we say that we are using a mixed graphics mode. The portion of
the display in mode O is called the text window, because it pro-
vides a small opening in which we can display ordinary mode 1
text. Later, we will learn how to place the entire display in mode
1, without the text window.

While in mode 1, we can still type BASIC instructions to the
computer, although all of our typing will now appear within the
limited confines of the text window. For instance, type

PRINT “HELLO, THERE!"

and press RETURN. The words HELLO, THERE! will appear on
the display, just as they would in mode 0. However, notice that
they appear in the text window and not in the mode 1 portion of
the display. Earlier, we said that mode 1 is a text mode. Yet, you
might wonder what good it does to have additional text modes if
they do not display text.

The PRINT statement, unless we modify it in some way, will
always output text to the mode 0 text window. (If there is no
mode 0 text window, the OS will automatically place the entire
screen in mode O when the PRINT statement is executed.) The
way we modify the PRINT statement to print on the mode |
portion of the display is to change it to a PRINT #6 statement.
The #6 portion of the statement tells the operating system that we
wish to print to the upper portion of the graphics display, no
matter what mode it is currently in.

A display in mixed graphics mode

To demonstrate, type
PRINT #6; “"HELLO, THERE!"

and press RETURN. The words HELLO, THERE! will now
appear at the very top of the display, in the mode 1 portion.
Notice, however, that the characters look quite different than
they did on the mode 0 screen. They are larger, or at least wider.
And this, in fact, is one of the essential differences between
modes 0 and 1 (though not the only difference). Mode 1 produces
characters twice as wide as those in mode 0. While we can print
thirty-eight characters across the display in mode 0, we can print
only nineteen characters across in mode 1. On the other hand,
both modes allow us to print twenty-four lines of characters—or
would, if the mode covered the entire display.

Some uses for mode 1 text should immediately come to
mind—the design of eye-catching title screens, for instance,
where you may wish to use large and dramatic characters. We can
also use mode 1 to increase the size of our graphics characters,
which would produce more substantial (if somewhat less
detailed) graphic images.

[16]

Before you decide to do all title screens and graphics in
mode 1, however, let’s take a look at mode 2. Type

GRAPHICS 2

and press RETURN. First, the screen will clear. (This happens
automatically when we type the graphics statement, though in a
moment we will discover a way to stop it from happening.) Then
it will return to a state that looks remarkably like mode 1: a black
screen with a blue text window at the bottom. Are we back in
mode 1 again?

No, although mode 2 behaves much like mode 1. For
instance, PRINT statements will still direct their output to the
text window, as before. And we can still print information on the
mode 2 screen with PRINT #6. Type

PRINT #6; "HELLO, THERE!"

and press RETURN. Once again, the words HELLO, THERE!
will appear on the upper, mode 2 portion of the display. Now,
however, the letters are even larger. Not only are they twice the
width of the mode O characters, but they are twice the height.
Even if mode 2 filled the entire display, we could print only
twelve lines of these characters at one time, instead of the usual
twenty-four.

Think of the eye-catching title displays you could create with
mode 2! Think of the outsized graphic images you could piece
together from the enlarged graphics characters!

The text mode you choose to work in, of course, depends on
what effect you are trying to achieve. In some cases, mode 2 (or
even mode 1) characters may be too large for your purposes; in a
few cases, they may even be too small (in which event you are left
to your own devices, since this is the largest character mode that
the Atari will supply).

When we wish to exit the current text modes and return to
mode 0, we can simply type

GRAPHICS 0

and press RETURN. An easier method, however, is to press the
RESET key. This causes the display to revert to mode 0, but does
not affect any programs that we have in memory.

REMOVING THE TEXT WINDOW

With a tiny bit of extra effort, we can produce variations on these
two new graphics modes. If we wish to eliminate the text window,

[17]

for instance, we can add 16 to the mode number in the GRAPH-
ICS statement. The statement

GRAPHICS 1 + 16

will place the display in mode 1 without a text window. This may
also be written as GRAPHICS 17; however, the notation
GRAPHICS 1 + 16 makes the intent of the statement clearer to
anyone, ourselves included, who attempts to read the program
that we have written.

If you attempt to type this statement in the immediate mode,
a peculiar thing will happen. The display will be placed ever so
briefly in mode 1, then will revert automatically to mode 0. Why
does this happen? Earlier, we said that the OS would automati-
cally restore the display to mode O if we tried to use an ordinary
PRINT statement on a display without a mode 0 text window
(unless, of course, the display was in mode 0 to begin with). The
same thing happens when BASIC attempts to print the word
READY on the display after executing our immediate mode
instruction. There is no text window to print it in; therefore the
OS automatically reverts the entire display to mode O.

Thus, when we create a full-screen mode other than mode 0
we must do so in a program, rather than in the immediate mode.
To see a mode 1 screen in action without a text window, type this
program:

10 GRAPHICS 1 + 16

20FORI =1TO 12

30 PRINT #6; “THIS IS A FULL”

40 PRINT #6; 'SCREEN TEXT MODE"
50 NEXT I

60 GOTO 60

and RUN it.

What does this program do? Line 10 places the full display in
mode 1, without a text window. The loop in lines 20 through 50
fills the display with the words THIS IS A FULL SCREEN TEXT
MODE. Finally, line 60 creates an infinite loop that prevents
BASIC from printing the word READY on the display and there-
by restoring mode 0. To exit from this program, press either
BREAK or RESET. (Note that we must be careful not to allow
the printing to run off the end of the mode 1 display. Unlike
mode 0, the mode 1 display will not automatically scroll up one
line when we reach the bottom; rather, we will receive an error
message if we attempt to print past the last line of the display.)

Similarly, we can create a full mode 2 display by typing
GRAPHICS 2 + 16 (or GRAPHICS 18).

(18]

To demonstrate, change lines 10 and 20 in the above program
to:

10 GRAPHICS 2 + 16
20FORI =110 6

and RUN it.

UNCLEARING
THE SCREEN

Another variation we can play is to enter one of these graphics
modes without clearing the screen first. To do this we add 32 to
the mode number in the GRAPHICS statement. For instance, to
enter mode 1 without clearing the screen, we would type
GRAPHICS 1 + 32 (or GRAPHICS 33). Here is an example:

10 GRAPHICS 0

20FOR I =1TO 18

30 PRINT ““THIS IS MODE 0"

40 NEXT |

50 GRAPHICS 1 + 32

60 PRINT #6; “BUT THIS IS MODE 1"
70 GOTO 70

This program fills the screen with mode O text, then switches to
mode 1 with the text (or as much of it as will fit) still intact, plus
one extra statement. During the switch from one graphics mode
to another, of course, the text changes size and position on the
display.

If we wish to combine both of these variations—that is, to
enter a full-screen graphics mode without clearing the display—
we add 32 + 16 (or 48) to the mode number. To enter a full-
screen mode 2 without clearing the screen we would type
GRAPHICS 2 + 32 + 16 (or GRAPHICS 2 + 48 or GRAPH-
ICS 50).

A great deal can be done graphically within the limits of these
three graphics modes. Before we examine these modes further,
however, let’s pause and look at some other modes that offer us a
completely different method of putting graphics on the display:
bitmap graphics.

Suggested
Projects

1. Using the CHR$ function and a FOR-NEXT loop,
write a program that will print the entire character set of
your computer on the mode 0 display.

2. Alter the above program to print the character set on
the mode 1 display. What differences do you see in the
character set? How many different characters are dis-

played? How do some of these characters differ from oth-
ers?

3. What instruction will cause the OS to put the display
into each of the following modes?

a. Mode 2 display without a text window.

b. Mode 1 display with a text window but without a
cleared screen.

¢. Mode 0 display without a text window or cleared
screen.

MWII

BITMAP
MODES

L

Earlier, we compared computer graphics to the art of mosaic and
said that programming computer graphics was primarily a matter
of putting colored pixels together to form a picture.

After reading the last chapter, you may wonder if this is really
so. We have, until now, spent a lot of time putting characters on
the display, but precious little time dealing with pixels. When we
create text graphics, are we really manipulating individual pix-
els?

The answer is a qualified yes. If you look closely at the char-
acters that you type on the Atari display, be they letters of the
alphabet or graphics characters or whatever, you will see that
these characters are made up of tiny dots. In fact, each character
is made up of a matrix of eight dots horizontally and eight dots
vertically, for a total of sixty-four dots in all. These dots are pix-
els. You may not see all sixty-four pixels when you look at a
character on the display, but this is simply because some of these
pixels are the same color as the background, rendering them
effectively invisible.

Thus, when we program text mode graphics we are telling the
computer what patterns of pixels we want it to place on the dis-
play. However, we are limited to the use of predefined patterns
placed in the computer by the manufacturer. (As noted earlier,

[21]

there is a way to escape this restriction, which we will study in the
section on advanced graphics.)

THE BITMAP REALM

By leaving the text modes altogether, we enter a completely dif-
ferent realm of graphics creation, where there are no predefined
patterns of pixels. In this realm we can tell the Atari to place
pixels at specified positions on the display, in specified colors.
We have complete freedom to produce any combinations of pix-
els that we wish, within certain limitations that will soon become
apparent.

We gain this freedom for a price, however. Displays that
would be simple to create in a text mode become surprisingly
difficult in one of these bitmap modes. Fortunately, the opposite
is true as well. The bitmap modes available with the GRAPHICS
statement are modes 4 through 11, 14 and 15.

If you have one of the earlier, pre-1982 Ataris, without the
GTIA chip, modes 9 through 11 will not be available. If you are
not sure if your machine precedes this date, type this program:

10 GRAPHICS 9
20 GOTO 20

and press RETURN. If the display turns black, you have the
GTIA chip and can use modes 9 through 11. If nothing happens,
you have an earlier Atari with the CTIA chip, and will have to sit
out the description of these modes.

You will be able to use modes 14 and 15 only if the name of
your Atari model contains the letters XL. Owners of pre-XL
machines must sit out the description of these modes even if they
have the GTIA chip. (However, you’ll learn a way of creating
these modes without the GRAPHICS statement, in the section on
advanced graphics.)

There are two essential differences between the various bit-
map modes. One is resolution, that is, the size and shape of the
pixels that can be displayed. The other is the number of different
colors that can appear on the display at one time. We’ll discuss
color more fully in the next chapter; for now we’ll concentrate
primarily on resolution.

GRAPHICS MODE 7

Mode 7 is fairly representative of the Atari bitmap modes, so we
will look at this mode in some detail before we study the others. It
is a medium-resolution mode, which is to say that we can use it to

[22]

produce fairly detailed images, but not the most detailed the
Atari is capable of. It is also a four-color mode, which means that
we can display four colors simultaneously while in mode 7.

To enter mode 7, type

GRAPHICS 7

and press ENTER. As in modes 1 and 2, the display clears and
turns black, except for a small blue text window at the bottom of
the display. In fact, mode 7 looks suspiciously like modes 1 and 2.
Could this really be a bitmap mode instead of a text mode?

To find out, type this statement:

PRINT #6; “THIS IS NOT A TEXT MODE"

in the text window and press RETURN.

Instead of printing the text in the upper portion of the dis-
play, the Atari prints a line of dots in response to this command.
These dots are pixels. You might wonder what they have to do
with the sentence that we asked the computer to print. The
answer is: Not much.

The Atari OS will obligingly print text on the display in any
graphics mode that we happen to be using; at least, it will ¢try to
print the text. Unfortunately, text is meaningless in a bitmap
mode. Instead of text, Antic and GTIA now expect to receive
information concerning the pixels that we wish to draw on the
display. The graphics chips make an earnest attempt to interpret
our text as a sequence of pixels, but the result usually has nothing
to do with the text we wanted to print.

The solution to this problem is simply not to use the PRINT
#6 statement while in a bitmap mode. We can still use the ordi-
nary PRINT statement to place text in the text window, assuming
there is a text window. In addition, Atari BASIC offers us several
statements that can be used to place meaningful or interesting
patterns of pixels in the bitmap mode portion of the display.

THE PLOT STATEMENT

Though you may not be aware of it, the mode 7 display that you
are now looking at is covered with pixels. Unfortunately, these
pixels are all the same color. In order to change the color of some
of these pixels, we can use the PLOT statement.

The syntax for the PLOT statement is

PLOT column,row

where “column” and “row” are the horizontal and vertical coor-

(23]

dinates, respectively, of the pixel whose color we wish to change.
These coordinates are given as numeric expressions.

The Atari display is divided into a matrix of pixels—that is,
the dots of color are arranged in horizontal rows and vertical col-
umns. The number of pixels in this matrix depends on what bit-
map mode we are using, just as the number of characters that we
can place on the display in a text mode depends on what text
mode we are using.

In mode 7, the matrix contains 12,800 pixels (if there is a text
window present) or 15,360 pixels (in a full-screen mode). These
pixels are arrayed in a specific pattern. In mode 7, the display is
160 pixels wide and 80 or 96 pixels high, depending on whether
there is a text window. (As before, we can turn off the text win-
dow by adding 16 to the mode number in the GRAPHICS state-
ment. There is, however, no text window available in modes
9to11.)

The coordinates that we use with PLOT tell the Atari the
horizontal and vertical positions within this matrix of the pixel
we want to plot. The first number specifies what horizontal row
of pixels the pixel is in, where the top row of pixels is row 0. The
second number specifies what column of pixels the pixel is in,
where the leftmost column of pixels is column 0. In mode 7, the
first number may be any number from O to 159 and the second
number may be any number from 0 to 79 or 95, depending (once
again) on whether or not there is a text window.

Before we use the PLOT statement, we must tell the OS what
color we wish to change the pixels to. This is done with the
COLOR statement. The syntax for the COLOR statement is

COLOR color number

where “color number” is a number from O to 4.
We’ll have more to say about color numbers in the next chap-
ter, so for now, simply type

COLOR 3

while in mode 7 and press RETURN. This tells the OS to plot all
subsequent pixels in light blue, until told otherwise. (If you’ve
run any graphics programs other than the ones in this book since
you turned on the computer, you might hit the RESET key and
issue another GRAPHICS 7 statement before typing this state-
ment, to make sure that color 2 is light blue. More about this
later.)
Now type

PLOT 80,42

[24]

This statement tells the computer that the pixel we wish to plot—
that is, the pixel whose color we wish to change—is in row 80 and
column 42. A light-blue pixel should appear roughly in the center
of the display.

DRAWING LINES

That wasn’t very hard, was it? However, plotting a single pixel on
the Atari display isn’t exactly a useful occupation. We need to be
able to put together a meaningful picture out of pixels. This gen-
erally involves putting a lot of pixels on the screen very quickly,
in some sort of pattern. For instance, here is a program that will
arrange a sequence of mode 7 pixels in a straight line:

10 GRAPHICS 7 + 16

20 COLOR 2

30 FOR COLUMN = 30 TO 130
40 PLOT COLUMN,42

50 NEXT COLUMN

60 GOTO 60

This program cycles the value of the variable COLUMN
through a series of possible values between 30 and 130. It then
plots the pixel at each successive value of COLUMN, 42 in color
number 2. This causes a light-green straight line to be drawn
across the middle of the display.

(Readers not previously familiar with Atari BASIC may be
surprised at the length of the variable name used in this program.
Unlike many other versions of BASIC, which recognize only the
first two characters of a variable name, Atari BASIC will recog-
nize a full 128 characters in a variable name, allowing us to adopt
names that suggest the purpose for which the variable is being
used, making our programs easier to read. Note, also, that Atari
BASIC requires that we place the name of a variable after the
word NEXT in a NEXT statement, unlike other BASICs in which
this is optional.)

Here is a program that will arrange a sequence of mode 7
pixels 1n a near square:

10 GRAPHICS 7 + 16

20 COLOR 2

30 FOR ROW = 20 TO 60

40 FOR COLUMN = 60 TO 100
50 PLOT COLUMN,ROW

60 NEXT COLUMN

70 NEXT ROW

80 GOTO 80

(25]

Similarly, this cycles the values of variables ROW and COL-
UMN through a series of possible values between 20 and 60 and
between 60 and 100, respectively. It then plots the pixel at each
successive value of the COLUMN,ROW coordinates. This
causes a rectangular area on the display to be filled with pixels.

THE DRAWTO STATEMENT

There is an easier way to achieve these and similar effects, using
the DRAWTO statement. The DRAWTO statement plots a
straight line of pixels on the display between the pixel most
recently plotted and another, specified set of coordinates.

The DRAWTO statement is written almost identically to the
PLOT statement, like this:

DRAWTO column,row

where “column” and “row” are the horizontal and vertical coor-
dinates at which you wish the line to end. The line will begin at
the coordinates of the most recently plotted pixel; if we have not
previously plotted a pixel before using the DRAWTO statement,
the beginning of the line will be assumed to be at coordinates

For instance, to draw a line between coordinates 55,16 and
7,62 in mode 7, we could use this program:

10 GRAPHICS 7 + 16
20 COLOR 2

30 PLOT 55,16

40 DRAWTO 7,62

50 GOTO 50

The PLOT statement in line 30 establishes the beginning of the
line as 55,16. The DRAWTO statement in line 40 will draw a line
from this position to coordinates 7,62. Any subsequent DRAW-
TO statements will begin at the coordinates where this DRAW-
TO statement leaves off—i.e., 7,62—unless there are intervening
PLOT statements.

Try drawing some lines of your own with DRAWTO; just
bear in mind that both endpoints of the line must fall within the
coordinate range of the mode 7 screen, or you will be dumped
unceremoniously back into mode 0 with an error message. You'll
probably notice quickly enough that the diagonal lines drawn by
DRAWTO are not precisely straight; a degree of jaggedness
creeps in. This is because the pixels generated in mode 7 are not
small enough to blend into a perfect diagonal. There is a kind of
stairstep effect. The pixels form the line as a series of horizontal

The programs for these designs
utilize DRAWTO statements.

RUNning the random-line program in this chapter
creates a picture that looks something like this.

or vertical segments, approximating but not quite duplicating a
genuinely straight line. Nonetheless, the effect is quite sufficient
for most graphics purposes.

Here is a program that draws a random web of lines across
the Atari display, each line beginning where the previous line
leaves off:

10 GRAPHICS 7 + 16

20 PLOT INT(RND(1)*160), INT(RND(1)*96)

30 DRAWTO INT(RND(1)*160), INT(RND(1)*96)
40 GOTO 30

Line 20 generates a random starting point for the line with the
RND function. The Atari function RND(1) is always equal to a
random fraction between 0 and 1. By multiplying this value by
160 and chopping off any fractional values with the INT func-
tion, we produce a random whole number between 0 and 160.
Similarly, multiplying the RND(1) value by 96 produces a ran-
dom number between 0 and 96. Line 30 then uses the same meth-
od to calculate a random endpoint for a line and draws the line.
Line 40 sets up an infinite loop that causes this latter process to
repeat again and again. To exit the program, hit the BREAK
key.

(28]
DRAWING SHAPES

The DRAWTO statement is a powerful graphics tool; it allows us
to place many pixels on the screen all at once in a meaningful
pattern—a straight line. It shouldn’t be hard to see how this could
be used to place decorative borders around the screen, for
instance, or to create drawings of geometric objects. This pro-
gram uses DRAWTO to draw a square:

10 GRAPHICS 7 + 16
20 COLOR 2

30 PLOT 60,20

40 DRAWTO 100,20
50 DRAWTO 100,60
60 DRAWTO 60,60

70 DRAWTO 60,20

80 GOTO 80

Drawing geometric shapes like this is simply a matter of
determining the coordinates of the vertices of the shapes—that is,
the points at which two lines come together—and using those
coordinates as the endpoints of the lines. Sometimes, however,
we may wish to express the coordinates as variables rather than
numbers, so that the shape can be moved during the course of the
program. For instance, here is a variation on the above program
that allows us to place the square at any point on the display,
depending on how we answer the opening question:

10 GRAPHICS 0

20 ? “TYPE THE X,Y COORDINATES OF THE UPPER"
30 ? “LEFT-HAND CORNER OF THE SQUARE"

40 INPUT X,Y

50 IF (X>119) OR (X<<0) OR (Y>>55) OR (Y<0) THEN ? “BAD
COORDINATES" : GOTO 20

60 GRAPHICS 7 + 16

70 COLOR 2

80 PLOT X,Y

90 DRAWTO X+40,Y

100 DRAWTO X +40,Y +40

110 DRAWTO X,Y+40

120 DRAWTO, X.Y

130 GOTO 130

(Note that we use the abbreviation “?” for the PRINT state-
ment in this program. This is a common usage in Atari programs,
and we will use it frequently in this book. The BASIC interpreter
will treat it exactly as though it were a PRINT statement.)

[29]

This program prompts the user to input the horizontal and
vertical coordinates of the upper left-hand corner of the square,
stores these coordinates in variables X and Y, then checks to see
if they will cause the square to run off the edge of the display. If
not, it prints the square at that position.

A reading of lines 80 through 120 should make it obvious
how the program calculates the vertices of the square. The X
coordinate of the upper right-hand corner is 40 greater than the X
coordinate of the upper left-hand corner, while the Y coordinate
is identical; hence, if X and Y are the coordinates of the upper
left-hand comer, then the coordinates of the upper right-hand
corner are X+40,Y, no matter what the values of X and Y are.
Similar logic is used to calculate the other vertices. Hit BREAK
and type RUN to try the program more than once. You are
encouraged to try it with many different coordinates for the
square.

SCALING AND TRANSLATING

Moving a picture from one position on the screen to another by
having the computer recalculate the lines that make up that pic-
ture is called translation; we have translated the picture from one
position to another. Similarly, if we were to take the amounts that
are added to the X and Y coordinates in the above program and
make them into variables too, we would be able to change the size
and even the proportions of the square in much the same way;
this process is called scaling, because it allows us to change the
scale of the drawing. To demonstrate, make the following changes
and additions to the previous program:

42 ? “TYPE HEIGHT OF SQUARE”

44 INPUT HEIGHT

46 ? “TYPE WIDTH OF SQUARE”

48 INPUT WIDTH

50 IF ((X+WIDTH)>159) OR (X<0) OR ((Y+HEIGHT)>195) OR (Y <0)
THEN ? “BAD COORDINATES” : GOTO 20

90 DRAWTO X+WIDTH, Y

100 DRAWTO X+WIDTH, Y +HEIGHT

110 DRAWTO X, Y+HEIGHT

Try different values for the WIDTH and HEIGHT, as well as
the coordinates of the upper left-hand corner. You can create
small rectangles, large rectangles, short, fat rectangles and tall,
skinny ones. Be warned, however, that this program does not
check to see if any of the lines will run off the edge of the display.
If one does, the program will be interrupted, mode O restored,
and an error message printed. You might want to try your hand at

(30]

rewriting line 50 so that it checks for lines that will extend beyond
the allowable coordinates of mode 7 (0 to 159 horizontally and O
to 95 vertically). Hint: add the value of X to WIDTH to get the
highest horizontal coordinate and the value of Y to HEIGHT to
get the highest vertical coordinate, and check to see if these values
(as well as the beginning values of each line) are in range.

Here is a program that plays some variations on the scaling
and translation concept by drawing a series of concentric squares
in the center of the display:

10 GRAPHICS 7 + 16

20 YCENTER = 48 : XCENTER = 80

30 FOR SIZE = 4 TO 44 STEP 4

40 PLOT XCENTER—SIZE, YCENTER—SIZE

50 DRAWTO XCENTER+SIZE, YCENTER—SIZE
60 DRAWTO XCENTER+SIZE, YCENTER+SIZE
70 DRAWTO XCENTER —SIZE, YCENTER+SIZE
80 DRAWTO XCENTER—SIZE, YCENTER—SIZE
90 NEXT SIZE

100 GOTO 100

THE XIO STATEMENT

The DRAWTO command helps us get a lot of pixels onto the
screen very quickly, and in a meaningful pattern. However, Atani
BASIC (with a little help from the OS) can do the DRAWTO
command one better with a command that fills entire areas of the
screen with pixels in a single sweep. This is the XIO 18 com-
mand, sometimes unofficially referred to as XIO (FILL).

XIO is the Atari’s all-purpose output command. In effect, it
is a nearly direct pipeline to the OS; it allows us to access the
routines in the OS with minimal intervention by BASIC. It can
be used to duplicate the work of several other Atari BASIC com-
mands, such as PRINT, INPUT, GET, and several others. The
number that follows the XIO command indicates which particu-
lar operating system routine we want to use.

There is no other BASIC command equivalent to XIO 18. It
fills an entire area of the display with pixels. Alas, it is rather
awkward to use. It is best for filling rectangular areas, as we did in
a much earlier pixel plotting program. We must first draw a por-
tion of that rectangular area with the PLOT and DRAWTO com-
mands, then fill it with XIO 18. Here is the precise sequence of
steps necessary to fill a rectangle with pixels:

e PLOT the point at the lower right-hand corner of the rec-
tangle.

[31]

DRAWTO the upper right-hand corner.

DRAWTO the upper left-hand corner.

Give the command POSITION X,Y, where X and Y are
the coordinates of the lower left-hand corner.

e Give the command POKE 765, color register, where
color register is the same as the number used in the cur-
rent COLOR command.

e Type XIO 18, #6, 0, 0, “S:”

There are a (very few) possible variations on these steps, but
on the whole they should be performed precisely like this. Even if
you don’t understand the point of all of these steps, following
them letter by letter will produce a rectangular area filled with
pixels. Here is a sample program:

10 GRAPHICS 7 + 16
20 COLOR 2

30 PLOT 100,60

40 DRAWTO 100,20

50 DRAWTO 60,20

60 POSITION 60,60

70 POKE 765,2

80 XIO 18, #6,0, 0, “S:”
90 GOTO 90

Run the program; the rectangle fills with color much faster than
when we filled the earlier rectangle using a pair of loops and
PLOT statements.

THE CHANGING PIXEL

All of the tricks we can perform with pixels in mode 7 can be
performed in all of the other bitmap modes. All that changes is
the number of pixels that we can squeeze on the display at one
time and the number of colors in which we can squeeze them.

To demonstrate the differences in resolution between graph-
ics modes 3 through 8, the following is a demo program that
draws a line in each mode, printing the number of the mode in
the text window at the bottom of the display. Note that the line is
identical in each mode; that is, the starting and end coordinates
of the line are the same. Here’s the program:

10FORI=3TO 8

20 GRAPHICS |

30 PRINT “"GRAPHICS MODE ;I
40 COLOR 1

[32]

50 PLOT 0,0

60 DRAWTO 39,23

70 FOR J = 1 TO 1000
80 NEXT J

90 NEXT |

100 GOTO 100

In the first mode, mode 3, the line from coordinates 0,0 to
39,23 is huge, blocky looking. It stretches all the way across the
screen, from left to right, top to bottom. In mode 4, it shrinks.
Now it stretches only halfway across the screen. The line itself is
thinner, less blocky, though it still has a pronounced “stairstep”
look. In mode 5, there is no apparent change. In mode 6, the line
becomes smaller still, and thinner, though it still gives the
impression of being strung together out of a number of small
beads. It now stretches about one-quarter of the way across the
screen. In mode 7 there is, once again, no apparent change. In
mode 8, it shrinks away almost to nothing. It stretches no more
than one-eighth of the way across the screen. The stairstep look is
almost completely gone; the line looks like a genuine diagonal
line, just like one you might draw with a pencil, though perhaps
somewhat neater.

If you have an XL machine and want to see what the line
looks like in modes 14 and 15, change the following program
line:

10FOR1=14TO 15

and RUN the program again. If you have the GTIA chip and
want to see what the line looks like in modes 9 through 11, delete
line 30 and make the following change:

10FOR 1 =9TO 11

We cannot print the number of the graphics mode in the text
window in modes 9 through 11 because there is no text window
in modes 9 through 11. Note that the line seems to vanish alto-
gether in mode 10; this is normal. If you could see it, it would
look pretty much like it does in modes 9 and 11.

The reason that our line looks different in some modes is of
course that the size of the pixel changes. It is largest in mode 3, a
low-resolution mode. It is somewhat smaller in modes 4 and 5,
which are low-to-medium-resolution modes. It is smaller still in
modes 6 and 7, which are medium-to-high-resolution modes.
And it is smallest in mode 8, the Atari’s highest-resolution mode.
(Modes 9 through 11 and modes 14 and 15 fall into the middle-
resolution range.)

(33]

THE PIXEL MATRIX

As the size of the pixel changes, the number of pixels that can be
placed on the display at one time changes. This in turn alters the
number of pixels in the rows and columns of the pixel matrix.
Table 1 lists the number of pixels on the display in each mode
(the annotation “split” after the mode number indicates a text
window), along with the range of pixels vertically and horizon-
tally.

TABLE 1
NUMBER OF PIXELS ON DISPLAY IN
EACH MODE AND RANGE OF PIXELS

Number Number Number
Mode of Pixels per Row per Column
3 960 40 24
3 (split) 800 40 20
4 3840 80 48
4 (split) 3200 80 40
5 3840 80 48
5 (split) 3200 80 40
6 15360 160 96
6 (split) 12800 160 80
7 15360 160 96
7 (split) 12800 160 80
8 61440 320 192
8 (split) 51200 320 160
9 15360 80 192
10 15360 80 192
11 15360 80 192
14 30720 160 192
14 (split) 25600 160 160
15 30720 160 192
15 (split) 25600 160 160

You’ll notice that several modes—4/5, 6/7,9/10/11, 14/19—
have identical pixel matrices. That is, not only do they put the
same number of pixels on the display, but they arrange those pix-
els in identical patterns. There are differences between these
modes, however, as we shall see later.

When plotting pixels on the Atari display, we must always be
careful not to plot a point off the edge of the matrix. In mode 3,
for instance, we could not plot the pixel with coordinates 50,29
because no such pixel exists in mode 3, although we could easily

[34]

plot such a point in mode 7. If you should rashly attempt this
anyway, the Atari will break into your program with an error
message and return you to mode 0. Thus, you should always con-
sult Table 1 or a similar chart before plotting pixels in a given
mode. Note, however, that the highest coordinate that can be
used for the row or column of a pixel is one /ess than the number
of pixels in that row or column. This is because the O coordinate
is used for the first pixel in each row and column. For instance, in
mode 7 we could not plot a pixel at a coordinate position past
159,79 (split screen) or 159,95 (full screen).

Now that we’ve taken a look at how to change the color of a
pixel with the PLOT command, in the next chapter we will look
at how we determine the color that the pixel will take once it has
been plotted.

Suggested
Projects

1. Write programs that draw five-sided, six-sided, and
seven-sided figures on the Atari display. Write a program
that draws a four-sided, diamond-shaped figure.

Designs created for Project 1

2. Write a program that will ask for a pair of coordinates
on the display, then draw a six-sided figure starting at
that point. Rewrite the program to allow the user to mod-
ify the lengths of the sides of the figure.

3. Write a program that PLOTs a pixel in the middle of
the display. Use the XIO 18 technique described earlier
to draw a box around this pixel, and fill the box with
colored pixels. What happens when the fill color reaches
the pixel in the middle of the box?

4. Write a program that uses the PLOT command to
draw a border around the edges of the mode 3 display.
Rewrite the program to draw borders around the modes
5, 7, and 8 displays. Rewrite each of these programs to
draw the same border using the DRAWTO command
rather than the PLOT command.

'I“|||H|

COLOR

Nt

The Atari graphics chips, in cooperation with the Atari operating
system, will generate sixteen different colors. On most comput-
ers, this would be considered an adequate range of colors. The
Atari, however, also allows us to display each color in eight dif-
ferent luminances—that is, levels of brightness—for a total of
128 different color/luminance combinations.

Original design created on the Atari

[38]

Here is a program that will cycle the Atari display through all 128
of these, so you can see what they look like:

10FORI1=0TO 15
20FORJ = 0TO 14 STEP 2
30 SETCOLOR 2,1,J

40 FORK = 1 TO 100

50 NEXT K

60 NEXT J

70 NEXT |

There is no way to get all 128 of these colors on the display at
the same time, not without some extremely advanced program-
ming tricks. Most of the Atari graphics modes only allow two or
four colors to appear on the display simultaneously.

THE SETCOLOR STATEMENT

Before we plot a pixel on the display, we must tell the OS what
color we wish to plot it in. However, we don’t specify the actual
color we wish to use; rather, we specify the number of a register
identified with that color.

A register is simply a location within the computer’s memo-
ry. This location contains a color number, a number indicating
which color and luminance are to be identified with that particu-
lar register. There are five color registers, numbered 0 through 4.
We place color numbers in those registers with the SETCOLOR
statement. The syntax for the SETCOLOR statement is:

SETCOLOR register,color,luminance

where register is a numeric expression (a number or a variable or
a combination thereof) representing the desired color register,
and color and luminance are arithmetic expressions representing
the color and luminance that we wish to identify with that regis-
ter.

The register value after SETCOLOR must fall in the range
from O to 4. In the last chapter, we saw that we could specify a
plotting color with the COLOR statement, which consisted of the
word COLOR followed by a color-register number. Oddly, this
number is not the same as the register number in the SET-
COLOR statement, although it refers to that number. The SET-
COLOR register referred to by the number in the COLOR state-
ment varies depending on which graphics mode we are using.
Table 2 lists the correspondences between the COLOR and SET-
COLOR register numbers for modes 3 through 8. Because the

(39]

COLOR statement behaves somewhat differently in the other
modes, they have been left off Table 2.

TABLE 2
CORRESPONDENCES BETWEEN COLOR AND
SETCOLOR REGISTERS FOR MODES 3 THROUGH 8

Mode Setcolor Register Color Number
3,5,7,15 0 1
1 2
2 3
3 0
4,6 0 1
4 0
8 1 1
2 0
14 0 1
4 0

As should be obvious from that chart, not every register is
used in every mode. Table 3 specifically lists which registers are
used in which modes, and what they are used for. The foreground
register(s) is the register typically used for the plotting color (in
pixel modes) or the character color (in text modes). The back-
ground register contains the color that you see after you clear the
screen, though in most instances this register can also be used for
plotting. The border color determines the border around the
edges of the display. (In most modes this is controlled by the
same register as the background.) Modes 9 through 11 are omit-
ted because they use the registers in an unusual manner. Modes 0
and 8 also deviate from the normal register use pattern, as we
shall see later.

TABLE 3
CORRESPONDENCE BETWEEN
MODES AND REGISTERS

Foreground Background Border

Mode Register Register Register
0,8 1 2 4
1,2 0,1,2,3 4 4
3,5,7,15 0,1,2 4 4
, 0 4 4
14 0 4 4

[40]

The color number in the SETCOLOR statement must be
between O and 15. Table 4 lists the colors represented by these
numbers.

TABLE 4
RELATIONSHIP BETWEEN COLOR NUMBER
AND COLOR

Color Number Color

0 Gray

1 Gold

2 Orange

3 Red

4 Pink

5 Violet

6 Blue-Purple

7 Blue

8 Light Blue

9 Blue-Green
10 Aqua
11 Green-Blue
12 Green
13 Yellow-Green
14 Orange-Green
15 Orange

The luminance value in the SETCOLOR statement must be
an even number from O to 14. This number determines the bright-
ness with which the color represented by the color number will be
displayed. The lowest luminance number, 0, will produce the
darkest color; the highest number, 14, the lightest color.

As an example, the statement

SETCOLOR 1,10,2

will place color 10 (aqua) and luminance 2 (quite dark) in SET-
COLOR register 1.

To see how this color register system works on your comput-
er, first push the RESET button. This will assure that your com-
puter is in graphics mode O with the default color settings (that is,
the color register values automatically determined by the Atarni
when it is turned on.)

Type

SETCOLOR 2,9,4

[41]

and press RETURN. Although SETCOLOR register 2 is the reg-
ister that determines the background color in mode 0, nothing
visible should happen. This is because color 9, luminance 4 is the
normal background color setting for mode 0.

Now type

SETCOLOR 2,9,6

and press RETURN. The background should lighten slightly. We
have just changed the luminance of the current color without
changing the color itself. Now type:

SETCOLOR 2,1,6

and press RETURN. The entire screen should turn gold.

Take some time and experiment with SETCOLOR register 2
in mode 0. Set the register to any different combinations of color
and luminance (within the legal ranges) that come to mind.
Notice the results. Check them with what you see in Table 2. Be
aware that colors have a tendency to vary between different tele-
vision sets and monitors.

PLOTTING IN COLOR

All done? OK, now let’s do some color plotting. We’ll use our old
friend mode 7. Type

GRAPHICS 7

and press RETURN. As in the last chapter, we are going to plot a
pixel directly in the middle of the display. However, this time we
want to plot the pixel in red. Can you figure out the sequence of
steps necessary to do this?

Before we give any commands to the computer, we must con-
sult Table 4, which tells us that the color number for red is 3.
Looking at Table 3, we see that registers 0, 1, and 2 can be used
for foreground plotting. We'll arbitrarily choose register 1. To get
a particularly vivid shade of red, we’ll use a luminance number of
0. If you’ve been paying attention, you’ll recall that we assign a
color of 3 and a luminance of O to register 1 with the statement

SETCOLOR 1,3,0
Type this statement in the text window- and press RETURN.

You’ll notice a rather odd change in the colors within the text
window when this command is executed; ignore it. Now, to

(42]

establish that we will be plotting with SETCOLOR register 1, we
consult Table 2. It tells us to use COLOR number 2.
We now type:

COLOR 2

and press RETURN. Once we have established the plotting color,
we can go ahead and plot the pixel like this:

PLOT 80,42

Type this command and press RETURN. The pixel will appear
in the middle of the display.

Or will it? Actually, there doesn’t seem to be anything on the
display. The reason is that the dark red we have chosen to plot in
is too much like the naturally black background color of mode 7.
We must change the background in order to make it visible. The
background SETCOLOR register for mode 7 is 4. We can change
it to a light orange background by typing

SETCOLOR 4,15,2

Ah! There’s our red pixel, directly in the middle of the display.
This should prove the point that the combination of background
and foreground colors that we choose for the Atari screen is as
important as the individual colors themselves. Some combina-
tions work better together than others.

If you want another example of this, try typing

SETCOLOR 4,0,16

and press RETURN. This sets the background to a dazzling
shade of white, so dazzling, in fact, that you may have trouble
making out the contents of the text window in the glare. Further-
more, our red dot seems black by contrast. Not exactly what we
had intended.

If you follow the information in the tables, you should have
no trouble using the color registers in modes 3 through 8 and 14
through 15. Remember that in all but one of these modes, SET-
COLOR register 4 is used to control the color of the background.
In mode §, which behaves a little differently from the others, reg-
ister 2 controls the background color. This is also true of mode O,
which resembles mode 8 in many ways, except that it is a text
mode instead of a pixel mode. In fact, the size of the individual
pixels in mode O is precisely the same as the size of the pixels in
mode 8; only, mode 0 does not give us control over these pixels,

[43]

only over the character patterns that are made up of these pixels.
Note also that register 4 is used as the border color in all modes.
Since this is the same register used for the background color in
certain modes, the background and border will always be the
same color in these modes.

To plot in the background color, we always use COLOR 0, no
matter what the SETCOLOR register is for background in the
current mode. (See Table 2 to verify this.) Why would we want to
plot in the background color? Usually, to erase pixels that we’ve
previously plotted in a foreground color, as a way of turning the
pixels back “off,”” in other words.

Certain modes, such as 0, 4, 6, 8, and 14, feature only one
foreground color register. These are called the two-color modes,
because they allow us to place only two colors on the display at
the same time—the foreground color and the background color.
Other color registers are ignored. (Modes 0 and 8 also allow a
separate border color.) Several additional modes feature three
foreground color registers. These are called the four-color modes,
because they allow us to place four colors on the display at the
same time—the three foreground colors and the background
color.

The foreground color in modes 0 and 8 is handled somewhat
differently from the other modes. Once we have set the color and
luminance of the background register using the SETCOLOR
statement, we cannot reset the color of the foreground register; it
must always be the same color as the background. We can control
only the luminance of the foreground register. Thus, the pixels
that we plot in mode 8 and the characters that we print in mode 0
will always be the same color as their backgrounds, but they
should have different luminances.

For instance, if we set the background color to violet by typ-
ing

SETCOLOR 2,5,0

the Atari will automatically set the foreground register (SET-
COLOR register 1) to the same color.

We can use the SETCOLOR statement to change the lumi-
nance of the foreground, however, so that the characters will con-
trast properly with the background. This is done with a statement
like this:

SETCOLOR 1,5,10

Note that we have used the same color as in the SETCOLOR
statement: color 5, or purple. Even if we had attempted to use a

(44]

different color, however, it would have been ignored by the
OS.
For instance, the statement

SETCOLOR 1,9,10

would have had exactly the same effect. When we set the fore-
ground register in mode 0, the OS pays attention only to the reg-
ister and luminance number; the color number is meaningless.

THE GTIA MODES

So far we have scarcely mentioned GTIA modes 9 through 11.
There is a reason for this. These modes behave somewhat differ-
ently from the way in which the other modes behave.

In each of these modes, the display resolution is 80 X 192—
that is, the pixel matrix is made up of 80 columns and 192 rows.
The difference between these modes is in the number of colors
that we can place on the display at one time.

In mode 9, we can have one color, but we can display it at
sixteen different luminances.

In mode 11, we can have sixteen different colors, but we must
display them all at the same luminance.

In mode 10, we can have eight different color/luminance
combinations.

First, we’ll examine mode 9, where we can have one color in
sixteen different luminances. We set the single color of mode 9
using SETCOLOR register 4. This register sets both the back-
ground color—the normal function of register 4—and the fore-
ground colors. It is the only register that we use in this mode. The
syntax for SETCOLOR in mode 9 is

SETCOLOR 4, color, background-luminance

where *‘color” is the single color that we will work with in mode 9
and “background-luminance” is the luminance that we wish to
assign to the background.

For example, the statement

SETCOLOR 4,1,2

sets register 4 to color 1 (gold) at luminance 2. Color 1 now
becomes the only color that we may use in mode 9. (We can issue
another SETCOLOR statement, of course, but that will change all
the colors on the display.) The luminance number will set the
luminance of the background.

[45]

The COLOR statement is used in an unusual fashion in
mode 9. Rather than determining the color in which we will be
plotting, it determines the luminance. The syntax for the COLOR
statement in mode 9 is

COLOR luminance

where “luminance” is (as before) an even number from O to
14.

For instance, if we wish to draw a light aqua line on a dark
aqua background, we could use this program:

10 GRAPHICS 9

20 SETCOLOR 4,10,0
30 COLOR 8

40 PLOT 7,10

50 DRAWTO 65,167
60 GOTO 60

Line 10 puts us in mode 9. Line 20 establishes the mode 9 color as
10 (aqua) and the background luminance as 0 (very dark). Line
30 establishes the plotting luminance as 8 (much lighter). Line 40
starts the line, and line 50 finishes. Line 60 establishes an infinite
loop to prevent the OS from returning us to mode 0. (Remember
that no text window is available in mode 9.)

To prove that sixteen luminances are indeed available in
mode 9, here is a program that prints all of them on the display at
one time, then cycles through the sixteen different colors. Notice
the subtle, almost three-dimensional shading effect that can be
created with this wide range of luminances:

10 GRAPHICS 9

20 SETCOLOR 4,0,0

30 FOR | = 0 TO 4 : REM REPEAT 4 TIMES

40 FOR J = 0 TO 15 : REM ALL 16 LUMINANCES

50 COLOR J

60 PLOT I*16+J, 0 : REM DRAW A LINE

70 DRAWTO 1*16+J, 191 : REM IN CURRENT LUMINANCE
80 NEXT J

90 NEXT |

100 FOR | = 0 TO 15 : REM CYCLE THROUGH ALL 16 COLORS
110 SETCOLOR 4,1,0

120 FOR J = 1 TO 500 : REM BRIEF DELAY

130 NEXT J

140 NEXT I

150 GOTO 100 : REM DO IT UNTIL SOMEBODY HITS BREAK

[46]

Save this program on disk or tape; we’ll be coming back to it in a
moment.

THE RAINBOW MODE

Much as mode 9 allows us to use sixteen luminances in the same
color, mode 11 allows us to use sixteen different colors, but they
must all be at the same luninance. Once again, we establish this
luminance with the SETCOLOR statement, using register 4, with
the syntax:

SETCOLOR 4, background-color, luminance
For instance, the statement
SETCOLOR 4,15,4

tells the OS that we wish to work with a mode 11 luminance of 4,
and that the background should be set to color 15 (orange). We
then select the colors for plotting with the COLOR statement. In
mode 11 the syntax for the COLOR statement is

COLOR color

where ““color” is a number from 1 to 15 that represents the color
we wish to plot with. We have no further control over the lumi-
nance.

For instance, if we wish to draw an orange square on a blue-
green background, both at luminance 8, we could write

10 GRAPHICS 11

20 SETCOLOR 4,9,8
30 COLOR 15

40 PLOT 20,40

50 DRAWTO 60,40
60 DRAWTO 60,160
70 DRAWTO 20,160
80 DRAWTO 20,40
90 GOTO 90

Line 10 puts us in mode 11. Line 20 establishes the luminance
as 8 and sets the background color to 9 (blue-green). Line 30
establishes the plotting color as 15 (orange). Lines 40 through 80
draw the square, and line 90 loops until we press BREAK or
RESET.

To see all sixteen colors on the display at one time in mode
11, make the following changes to the program that we used to
demonstrate the sixteen luminances in mode 9:

[47]

10 GRAPHICS 11

40 FOR J = 0 TO 15 : REM ALL 15 PLOTTING COLORS
100 FOR | = 0 TO 14 STEP 2

110 SETCOLOR 4,0,1

As this program proceeds, you will notice several dark bands
extending vertically across the display. These bands are in the
background color, which is the sixteenth color available in mode
11. It is the only one of the sixteen colors not affected by changes
in luminance, always remaining at a luminance of 0.

THE MOST VERSATILE MODE

Mode 10 is in some ways the most atypical of Atari graphics
modes, but it may also be the most versatile. It allows us to dis-
play eight different color/luminance combinations. In mode 10,
the COLOR statement functions in its normal capacity, as a
specifier for the color register. However, it now can specify any
register from 0 to 7, to accommodate the wide range of colors
available in this mode. You may recall an earlier statement that
there are only five Atari color registers. This is true, except in
mode 10. However, because the SETCOLOR statement will func-
tion with only five registers—SETCOLOR registers 0 through
4—it is necessary to find another way to place values in the
remaining registers.

Although we can use SETCOLOR to set five out of the eight
color registers used in mode 10, it is sometimes best to avoid the
use of SETCOLOR at all, as there is another method we can use
to set all eight registers: the POKE command.

The POKE command alters the contents of the Atari’s mem-
ory. Since the color registers are locations in memory, we can use
the POKE command to change them much as we use the SET-
COLOR command. Here is the syntax for using the POKE com-
mand to set a color register in mode 10:

POKE register+704, color*16 +luminance

where “register” is the register number that would be used in the
corresponding COLOR statement and “color” and “luminance”
are the numbers used to specify (what else?) the color and lumi-
nance. The register number must be in the range 0 to 7. (If you
should exceed this range, BASIC won’t tell you that you’ve made
an error, but you could destroy data and programs stored in the
computer’s memory, though not damaging the computer itself.)

For instance, if we wish to set register 6 to color 4 (pink) at a
luminance of 12, we would write

POKE 6+704, 4*16+12

[48]
We could also write this as
POKE 710, 76

but the former version is clearer to the initiated reader, and is
easier to modify should we change our mind about the color and/
or luminance we wish to place in that register. To plot in the color
that we stored in register 6, we would, of course, write

COLOR 6

and begin plotting.

Here is a program that uses the RND(1) function to place a
series of randomly colored stripes on the display, then randomly
alters the values in the color registers to produce a shifting color
effect:

10 GRAPHICS 10

20FOR1=0TO7

30 POKE 7041, INT(RND(1)*16)*16+ INT(RND(1)*16)
40 NEXT |

50 FOR | = 0 TO 79

60 COLOR INT(RND(1)*8)

70 PLOT 1,0

80 DRAWTO 1,191

90 NEXT |

100 POKE 704 + INT(RND(1)*8), INT(RND(1)*16)*16-+INT(RND(1)*16)
110 GOTO 100

Don’t stare at the screen for foo long; the effect is hypnotic.

TEXT PLOTTING

The COLOR statement, as well as several of the graphics com-
mands we studied in our discussion of the bitmap modes, can
also be used with text graphics, but to somewhat different effect.
For instance, it is possible to PLOT on the display while in modes
0, 1, and 2. However, instead of plotting pixels, we plot text char-
acters. And the COLOR statement determines which characters
we PLOT with.

For instance, we saw earlier in this chapter that the SET-
COLOR statement in mode 0, when used with register 2, controls
both the foreground and background colors; as a result, the SET-
COLOR statement, used with register 1, controls only the lumi-
nance of the characters placed on the text screen. Thus, it would
hardly be necessary to use COLOR to determine color, when all
of the colors are predetermined.

[49]

However, we can combine the COLOR and PLOT state-
ments to place individual characters at specified coordinates on
the mode O display, just as we use them in the pixel modes to
place colored pixels at specified coordinates. The COLOR state-
ment in mode 0 has this syntax:

COLOR atascii-code

where “atascii-code” is the ATASCII code number of the charac-
ter we wish to place on the display. The PLOT statement can then
be used to place the character on the display, using coordinate
positions within the twenty-four rows of forty characters, just as
we would use pixel coordinates to plot in a pixel mode.

For instance, if we wish to place the letter A in the third col-
umn of the twentieth row, we could write

10 GRAPHICS 0 : REM CLEAR THE DISPLAY

20 COLOR ASC("“A™) : REM GET ATASCII FOR “A™
30 PLOT 3,20 : REM PUT IT ON THE DISPLAY

40 GOTO 40 : REM HOLD IT THERE

RUN this program. Sure enough, the letter A appears in row 3 of
column 20. (Bear in mind that the display starts with row 0 and
column 0.) But what are those other two blocks of color spoiling
up our otherwise neat display?

Those two unsightly blocks are images of the Atari cursor,
which doesn’t always turn itself off when it should. How do we
get rid of these images? There is a special instruction that we can
use to turn off the cursor when it finds its way into modes where
it does not belong. It is

POKE 752,1

Add this statement to the above program as line 15, like
this:

15 POKE 742,1

and RUN the program again. Now, one of the two cursor images
has been removed—Dbut one remains. Getting rid of it is tricky.

One way is to clear the screen forcibly afier entering mode 0.
(Though the OS performs an automatic screen clear when the
GRAPHICS 0 statement is executed, the cursor sometimes finds
its way through subsequently.) We can forcibly clear the screen
with the statement

PRINT CHR$(125);

[50]

CHRS$(125) is the ATASCII code produced by the CONTROL-
“<” (or CLEAR) key. It can also be typed, within quotes, as ESC
CONTROL-~“<". To add this statement to the program, write

17 2 CHR$(125);

RUN the program again. Now both unwanted cursor images are
removed.

LINES OF TEXT

You might wonder what good it does us to PLOT letters in the
middle of the display. Admittedly, this application is of limited
utility. However, the DRAWTO statement can be used in text
mode to plot entire lines of text characters onto the display, from
one specified set of coordinates to another, a capability that can
be used quite effectively with graphics characters. For instance,
here is a program that uses the inverse space character (ATASCII
160) to draw a border around the display. Ordinarily, we could
produce such an effect with a set of FOR-NEXT loops, a process
that would be awkward and slow. Here we accomplish it with a
PLOT and four DRAWTOs:

10 GRAPHICS 0
20 COLOR 160

30 PLOT 0,0

40 DRAWTO 39,0
50 DRAWTO 39,23
60 DRAWTO 0,23
70 DRAWTO 0,0
80 GOTO 80

To reduce the dimensions of the borders, simply change the
coordinates. And, of course, characters other than reverse spaces
can be used for plotting, and in patterns other than rectangles.
Use your imagination. PLOT and DRAWTO are powerful meth-
ods of getting a lot of characters onto the mode 0 screen, very
quickly, in attractive patterns.

The COLOR, PLOT, and DRAWTO statements work in
much the same fashion in text modes 1 and 2, though the dimen-
sions of the display have changed: twenty columns across in
modes 1 and 2, and twelve rows in mode 2. However, these
modes allow us to place more colors on the display at one time
than does mode 0. You might wonder how we can specify which
of these colors we wish to use, if the COLOR statement is used to
determine characters.

[51]

Good question. And it has a rather complicated answer. In
modes 1 and 2 the characters themselves determine the colors in
which they will be printed. This is a concept more easily
explained if you understand binary numbers, a subject that will
be touched on in the section on advanced graphics. For now, here
is a chart that tells us which characters will be displayed in which
colors. Characters are given by ATASCII code. Equivalent color
registers are also given, along with a notation indicating whether
the character displayed in that register’s color will be displayed
normally or reversed.

ATASCII VALUES COLOR REGISTER

321090 Normal: 0
160 to 218 Reverse: 2
9] to 122 Normal: 1
225 to 250 Reverse: 3

Hence, a character with an ATASCII value of 63 will be dis-
played in normal video with the color in register 0. A character
with an ATASCII value of 240 will be printed in reverse video
with the color in register 3.

A major drawback of text modes 1 and 2 is that the actual
character printed will always be printed as though it were a char-
acter in the range 32 to 90; only the color will vary if the
ATASCII value of the character falls outside of this range.
CHR$(225), for instance, will be printed as the uppercase letter
A, as will CHR$(65), but the former will be reversed and in one
color while the latter will be normal and in another. This is why
we are limited to only sixty-four different characters. (This may
not quite add up, but bear in mind that some of the characters in
these ranges are control characters, which can be printed only
using the ESC method, and are not included in the chart.)

Here, for instance, is a program that prints a mode 2 sentence
in two different colors:

10 GRAPHICS 2

20 SETCOLOR 0,15,2

30 SETCOLOR 1,0,6

40 PRINT #6; '‘“Now iS tHe TiMe FoR aLl GoOd MeN aNd WoMeN
tO cOmE tO tHeAiD oF tHelr PaRtY."”

The lowercase letters, belonging to a different ATASCII
range from their uppercase counterparts, print in a different
color, although all characters will print as though they were
uppercase. (We can’t print lowercase in modes 1 and 2, because it

[52]

falls out of the allowed range.) To add to the variety of colors, you
might try throwing in some reversed characters, both uppercase
and lowercase. (Press the reverse key in the lower right-hand cor~
ner of the keyboard to get reversed characters.) This will bring in
yet another range of ATASCII codes and can result in as much as
four different colors being displayed at one time.

THE BAR CHART PROGRAM

Thus far, you may be tempted to believe that the primary use of
colored graphics is to place pretty patterns on the display. You
would be excused for thinking this, but it isn’t true.

There are some very serious uses for colored graphics, for
instance, the creation of bar charts.

A bar chart is a graphic representation of numeric data that
allows immediate visual comparison of related numbers. It is
used commonly in business to illustrate such difficult to grasp
statistics as relative sales figures and economic growth.

A bar is simply a filled rectangle, like the ones we drew in
Chapter Two, the size of which represents an important quantity.
By comparing the size of several such bars representing related
quantities, we can have an immediate, visceral sense of which
quantity is larger and which is smaller. And if we have several

Bar chart created using the program in this chapter

(53]

bars, representing the same quantity at different points in time,
we can instantly see if the quantity is rising or falling. Such charts
give us a much more immediate perception of certain trends.

Here is a bar chart program for your Atari, written in mode 8.
Mode 8 was chosen because its high resolution gives us the ability
to display small differences in size between the quantities repre-
sented by two bars. Of course, owners of GTIA Ataris should
recognize that we can get a similar fine discrimination in the
height of a bar using modes 9, 10, or 11, each of which has the
same vertical resolution (192 pixels) as mode 8. We would then
have the advantage of being able to use several different colored
bars on the display at one time. Nonetheless, we have written the
program in mode 8 so that even those without GTIA computers
can make use of it. It is not a finished, polished program, but it
could provide the basis for one. You are encouraged to customize
and expand it, to optimize it for any needs you may have for such
a program. We will offer some suggestions for customization at
the end of the chapter.

Here’s the program:

5 REM *** BAR CHART PROGRAM ***

6 REM

10 DIM LENGTH(32), TITLE$(36)

15 OPEN #1, 4, 0, "K:"

20 HIGHBAR = 1

30 GRAPHICS 1

32 SETCOLOR 1,0,8

34 SETCOLOR 2,0,0

36 SETCOLOR 4,0,0

40 POSITION 3,9

50 ? #6; “BAR CHART DEMO"

60 ? “TITLE OF CHART";

70 INPUT TITLES

80 ? “NUMBER OF BARS DESIRED"

90 ? “(2 - 32)"

100 INPUT NUMBER

110 IF (NUMBER > 32) OR (NUMBER < 2) THEN 80
120 FOR BAR = 0 TO NUMBER — 1

130 ? “LENGTH OF BAR NUMBER "; BAR + 1;

140 ? ** IN STANDARD UNITS"":

150 INPUT LNGTH

160 IF LNGTH < 1 THEN ? “BAD LENGTH" : GOTO 130
170 IF HIGHBAR < LNGTH THEN HIGHBAR = LNGTH
180 LENGTH (BAR) = LNGTH

190 NEXT BAR

200 GRAPHICS 8

210 SETCOLOR 2,0,0

[54]

215 COLOR 1

220 WIDTH = 320/NUMBER

230 UNIT = 158/HIGHBAR

240 FOR BAR = 0 TO NUMBER—1

250 PLOT BAR*WIDTH+WIDTH—5, 159

260 DRAWTO BAR*WIDTH+WIDTH—5, 159—UNIT*LENGTH(BAR)
270 DRAWTO BAR*WIDTH, 159—UNIT*LENGTH(BAR)
280 POSITION BAR*WIDTH, 159

290 POKE 765,1

300 XI0 18, #6, 0, 0, "S:"

310 NEXT BAR

320 POKE 752,1

330 ?

340 FOR | = 1 TO 18 — (LEN(TITLE$)/2 + 3)

350 7 ** ;

360 NEXT |

370 PRINT *** " TITLES;" **"

380 GET #1, K

390 GOTO 20

This listing is complex enough that we should go over it line
by line. However, you’ll probably want to type the program first
and RUN it, to see what it does. Initially, the program will
prompt you to enter the name of the chart. Secondly, it will ask
how many bars you wish to show on the display. Finally, it will
ask you, one at a time, what length each bar should have in “stan-
dard units.” By standard units, we simply mean that you should
have some unit of measurement in mind for the bars and use it
consistently on each bar.

For instance, if you are graphing the population of a country,
you may want to use millions of people as the unit, while if you
are graphing the sales of a small business, you might want to use
thousands of dollars as the unit. There is virtually no limit to the
range of numbers that you can use for input, except that negative
numbers are not allowed. The program will take the tallest bar in
the chart and “normalize™ it to the height of the display, then
adjust all shorter bars accordingly. Thus, only the relative sizes of
the bars matter, not the specific unit that you use. Once the bars
have been drawn and you are tired of looking at them, press any
key and you will be prompted to design another chart.

Here’s a line-by-line description of the program:

Line 10—Dimensions the array (LENGTH) that will hold the
lengths of the bars and the string TITLES$ that will hold the title
of the chart.

Line 15—Opens the keyboard as a direct input channel. On the
Atari, it is necessary to do this before we can use the GET state-

[55]

ment to obtain individual characters typed at the keyboard, as we
will do later in the program.

Line 20—Initializes variable HIGHBAR, which is used to hold
the height of the highest bar in the chart. It is important not to
initialize this variable to 0, because under certain circumstances
it might provoke a divide-by-zero error later in the program.
Line 30—Puts the display in text mode 1, for the program title.
Lines 32-36—Set the color registers for the opening title.

Line 40—Sets the cursor at the proper position to print the title.
We'll look at the POSITION command in the next chapter.
Line 50—Prints title.

Line 60—Prompts user (in text window) for title of chart.

Line 70—Inputs title into TITLES.

Lines 80-90—Prompt for number of bars in chart.

Line 100—Inputs number of bars.

Line 110—Checks for valid range.

Line 120—Starts loop to get lengths of all bars.

Lines 130-140—Prompt for length of each bar.

Line 150—Inputs length of current bar.

Line 160—Rejects negative lengths.

Line 170—Sets HIGHBAR equal to length of current bar, if cur-
rent bar is larger then the length of the previous largest bar.
Line 180—Sets LENGTH(BAR), which holds the length of the
current bar, equal to LNGTH. (Atari BASIC will not allow direct
INPUT of values to array elements.)

Line 190—If more bars, get’em.

Line 200—Sets GRAPHICS 8.

Line 210—Sets background color.

Line 220—Calculates width of each bar.

Line 230—Calculates standard unit in pixels.

Line 240—Starts loop that will draw each bar.

Line 250—Plots lower right-hand corner of current bar.

Line 260—Draws line to upper right-hand corner of current bar.
Line 270—Draws line to upper left-hand corner of current bar.
Line 280—Establishes position of lower left-hand corner.

Line 290—Establishes fill color.

Line 300—Fills the bar with color.

Line 310—If more bars, draw’em.

Line 320—XKlls the cursor.

Line 330—Prints a blank line in text window.

Line 340—Centers title in text window.

Line 350—Blank spaces from margin to text.

Line 360—Ready for title.

Line 370—Print title.

Line 380—Wait for a key to be pressed. (This is why we opened
the keyboard for input in line 15).

Line 390—Do it all over again.

Suggested
Projects

1. Although the bar chart program listed in this chapter
may lack the bells and whistles of a full-fledged profes-
sional bar chart program, it offers the essential core of
such a program. Feel free to customize it in any way you
would like. For instance, you might want to add a feature
that will print the size of each bar, in standard units,
directly under that bar; similarly, you might want to give
each bar a name (although this will somewhat limit the
number of bars that you can put on the display, since
each must be wide enough to have its name printed
underneath it).

Once you have created a thoroughly presentable bar
chart program, you can make two more changes:

a. Alter the program to read the number of bars,
length of each bar, etc., from a file on disk or tape.
(You’ll need to write a second program that will store
the appropriate values in the file.) Then rewrite the
program so that it will automatically load the data
and display a series of charts for an audience.

b. If you have a printer that will print graphics, add a
routine that will print a hard copy of each bar chart

in a format similar to that used on the display. Read
the printer manual to learn the appropriate instruc-
tions. If your printer will print color graphics, change
the routine to print bars in several different colors. (If
you have a GTIA Atari, you might rewrite the main
bar chart routine to print a multicolored chart in
GRAPHICS 10.)

Once you have customized the program, put on a dem-
onstration for your family and friends, or even for your
entire class. Use data in your charts that will be meaning-
ful to your audience: the scores of a school team over
their last several games, the amount of money that you
(or someone else) have earned in a part-time job, the
changes in temperature that you have recorded over the
previous month, etc.

2. Write a program using mode O that draws five playing
cards on the screen, side by side. Use the PLOT and
DRAWTO commands to draw the borders of the cards,
using graphics characters. Find characters in the Atari
character set that can be used to represent the card suits:
hearts, spades, clubs, diamonds. See if you can use this
graphic effect to create a program that will play a card
game with the user.

4

* L

L 3
4

Project 2 asks you

to design five
playing cards like
these. You also could
design the backs of
your computer cards.

|I|“’|HJ

i

ANIMATION

In Chapter Two, we saw a program that used the PLOT state-
ment and a FOR-NEXT loop to draw a line across the display. As
it turned out, this program was quite unnecessary, because the
DRAWTO statement can accomplish the same thing with less
programming effort and at greater speeds. Nonetheless, the tech-
nique that we used to draw that line, with a single modification,
can be used to create an exciting effect: video animation. That is,
we can use it to make things move.

Animation is an important aspect of computer graphics.
Computer animation makes arcade game programs possible.
Computers are used in Hollywood to create special effects for
movies like Tron and The Last Starfighter. And the Atari com-
puter is capable of very sophisticated animation.

We will start, however, with some very unsophisticated ani-
mation. Here is a program, similar to the one in Chapter Two,
that draws a line across the display:

10 GRAPHICS 3 + 16
20 SETCOLOR 4,12,0
30 SETCOLOR 0,13,8
40 COLOR 1
50FOR1=0TO 39
60 PLOT 1,12

SCORE
B0k
&na

S0, OO0 FI

Graphics developed on the Atari for the movie Star Wars

70 NEXT I
80 GOTO 80

The technique we use for drawing the line is simple. We
PLOT a sequence of pixels on the display, repeatedly increasing
the value of the horizontal coordinate by 1 until we have stepped
it through the full range of horizontal coordinates (0 to 39) avail-
able in mode 3. At the same time, we leave the vertical coordinate
unchanged. The result is a sequence of pixels all with the same
vertical coordinate but consecutive horizontal coordinates, i.e., a
horizontal line.

We can also create a vertical line like this:

10 GRAPHICS 3 + 16
20 SETCOLOR 4,12,0
30 SETCOLOR 0,13,8
40 COLOR 1

50FORI =0T0O 23
60 PLOT 20,1

70 NEXT I

80 GOTO 80

The only difference between this and the previous program is

(60]

that we now step the vertical coordinate through its entire range
of values while leaving the horizontal coordinate unchanged.

THE MOVING PIXEL

By making one small change to these programs, we can alter the
effect considerably. Suppose that we erase each pixel immediately
after we draw it. What good would this do us? Try this program
and see:

10 GRAPHICS 3 + 16

20 SETCOLOR 4,12,0

30 SETCOLOR 0,13,8

40 FOR X = 0 TO 39 : REM STEP THROUGH HORIZONTAL
COORDINATES

50 COLOR 1 : REM USE COLOR 1

60 PLOT 1,12 : REM TO PLOT PIXEL

70 FOR J = 1 TO 50 : REM DELAY BRIEFLY

80 NEXT J

90 COLOR 0 : REM USE BACKGROUND COLOR

100 PLOT 1,12 : REM TO ERASE PIXEL

110 NEXT | : REM GET NEXT HORIZONTAL COORDINATE
120 GOTO 40 : REM REPEAT INDEFINITELY

This is essentially our horizontal line drawing program, with
a couple of changes. We now erase each pixel before we draw the
next. (Actually, we plot the pixel in COLOR 1, then replot it in
the background color, COLOR 0, effectively erasing it.) When
you run the program, you will no longer see a line drawn across
the display. Instead, you will see a single mode 3 pixel float from
one side of the display to the other. We have, in effect, animated
the pixel.

Notice that there is a delay loop in lines 70 to 80, directly
between the instructions that plot the pixel (lines 50 to 60) and
the instructions that erase it (lines 90 to 100). This delay loop
serves two purposes. The first is to slow down the motion with
which the pixel appears to move. The second is to hold the pixel
on the display long enough for us to see it clearly before it is
erased.

Remove lines 50 to 60 to see what happens. The pixel will
move across the display so quickly that it is barely visible, and
the interval between the plotting and erasing of the pixel will be
so small that it will spend most of its time erased. By selectively
varying the limit value of the FOR-NEXT loop in line 70, we can
slow down or speed up the pixel. As the program is shown here,
we are using a value of 50 for the limit. A larger value will cause
the pixel to move more slowly; a smaller value will speed it up.

[61]

By making a similar modification to the vertical line drawing
program, we can cause the pixel to move from the top of the
display to the bottom, like this:

10 GRAPHICS 3 + 16

20 SETCOLOR 4,12,0

30 SETCOLOR 0,13,8

40 FOR | = 0 TO 23 : REM STEP THROUGH VERTICAL
COORDINATES

50 COLOR 1 : REM USE COLOR 1

60 PLOT 20,1 : REM TO PLOT PIXEL

70 FOR J = 1 TO 50 : REM DELAY BRIEFLY

80 NEXT J

90 COLOR 0 : REM USE BACKGROUND COLOR

100 PLOT 20,1 : REM TO ERASE PIXEL

110 NEXT | : REM GET NEXT VERTICAL COORDINATE
120 GOTO 40 : REM REPEAT INDEFINITELY

By simultaneously changing both the horizontal and vertical
coordinates of a pixel, we can cause the pixel to seem to move
diagonally, like this:

10 GRAPHICS 3 + 16

20 SETCOLOR 4,12,0

30 SETCOLOR 0,13,8

40 X = 0 : REM INITIALIZE HORIZONTAL COORDINATE
50 FORY = 0 TO 23 : REM STEP THROUGH VERTICAL
COORDINATES

60 COLOR 1 : REM USE COLOR 1

70 PLOT X,Y : REM TO PLOT PIXEL

80 FOR | = 1 TO 50 : REM DELAY BRIEFLY

90 NEXT |

100 COLOR 0 : REM USE BACKGROUND COLOR

110 PLOT X,Y : REM TO ERASE PIXEL

120 X = X + 1 : REM GET NEXT HORIZONTAL COORDINATE
130 NEXT Y : REM AND NEXT VERTICAL COORDINATE
140 GOTO 40 : REM REPEAT INDEFINITELY

In this example, the value of the vertical coordinate is
increased by a FOR-NEXT loop, while the value of the horizon-
tal coordinate is increased by an X = X + 1 statement in line
120. This situation could be reversed, of course, by placing the
horizontal coordinate in the FOR-NEXT loop and incrementing
the vertical coordinate with Y = Y + 1. To change the angle of
the line, we can change the amount that is added to the vertical or
horizontal coordinate. However, neither coordinate should ever
be increased by more than 1, unless you want the pixel to jump

[62]

across more than one coordinate position at a time, producing a
less than smooth animation.

THE LOCATE STATEMENT

Once we have animated an object, it is a fairly simple matter to
make that object interact with other objects on the display. This
is facilitated with the Atari LOCATE statement. LOCATE can be
used to examine a given coordinate position on the display to
determine if there is an object at that position, so that we can
detect interactions between more than one object.

The syntax for LOCATE is

LOCATE column,row,numeric-variable

“Column” and “row” are arithmetic expressions representing the
horizontal and vertical coordinates, respectively, of the position
we wish to examine on the display. “Numeric-variable” is a stan-
dard Atari numeric variable, a variable that can be set equal to a
number. The LOCATE statement assigns a value to this numeric
variable. In a text mode, the value assigned to this variable is a
number between 0 and 255, indicating the ATASCII value of the
character displayed in the indicated position on the screen. In a
pixel mode, the value assigned to this variable is a number
between 0 and 7, indicating the color register used for the pixel at
that position.

For instance, the following program places the words NOW
IS THE TIME on the top row of the mode 1 display, determines
what character is in the third position of that row using the
LOCATE statement, then prints both the ATASCII value of that
character and the character itself in the text window:

10 GRAPHICS 1

20 PRINT #6; “NOW IS THE TIME"

30 LOCATE 2,0,CHAR

40 PRINT “*ATASCII-""; CHAR; * CHARACTER-"; CHR$(CHAR)

Of course, when you run this program the ATASCII value
printed will be 87 and the character will be W. If you change the
sentence printed by line 20, however, this value will change, to
whatever character you place in the third position of the line.

OBJECTS IN COLLISION

When we have more than one object on the display and at least
one of them is moving, LOCATE can be used to detect collisions

[63]

between objects. Here is a program that uses LOCATE to bounce
a pixel back and forth between two walls:

10 GRAPHICS 3 + 16

20 SETCOLOR 4,0,0

30 SETCOLOR 0,8,8

40 SETCOLOR 1,8,8

50 COLOR 1 : REM COLOR FOR WALL

60 PLOT 10,0 : REM DRAW LEFT WALL

70 DRAWTO 10,23

80 PLOT 30,0 : REM DRAW RIGHT WALL

90 DRAWTO 30,23

100 DIRECTION = 1 : REM HORIZONTAL DIRECTION OF PIXEL
110 HORIZ = 20 : REM INITIAL HORIZONTAL COORDINATE

120 HORIZ=HORIZ +DIRECTION : REM GO TO NEXT HORIZONTAL
POSITION

130 COLOR 2 : REM COLOR OF PIXEL

140 PLOT HORIZ,12 : REM DRAW PIXEL

150 LOCATE HORIZ + DIRECTION, 12, COLOUR : REM CHECK NEXT
POSITION

160 IF COLOUR = 1 THEN DIRECTION = —DIRECTION : REM IF
WALL, THEN REVERSE DIRECTION

170 FOR DELAY = 1 TO 10 : REM DELAY BRIEFLY

180 NEXT DELAY

190 COLOR 0 : REM BACKGROUND COLOR

200 PLOT HORIZ,12 : REM ERASE PIXEL

210 GOTO 120 : REM CONTINUE INDEFINITELY

In this program, we no longer use a FOR-NEXT loop to
move the pixel. Instead, we place the horizontal coordinate of the
pixel in variable HORIZ and add to or subtract from it a value of
either 1 or —1 on each pass through the loop, depending on
whether we want the pixel to move right or left. This value is
contained in variable DIRECTION. If the value of DIRECTION
is 1, then the horizontal coordinate will move to the right (i.e.,
toward higher coordinate values). If the value of DIRECTION is
—1, then the horizontal coordinate will move to the left (i.e.,
toward higher coordinate values).

Line 120 actually adds the value of DIRECTION to HORIZ.
Then lines 130 to 140 plot the pixel at HORIZ,12. (The Y coor-
dinate of the pixel is always 12.) Line 150 uses the LOCATE
statement to check the value of the next position at which the
pixel will be plotted—position HORIZ+DIRECTION, 12, Line
160 checks to see if the COLOR register being used at this posi-
tion is register 1. If so, we can assume that the pixel is about to
strike the wall. In this event, the value of DIRECTION is

[64]

reversed—if it is 1 then it becomes — 1, and if it is — 1 it becomes
1. The pixel then appears to move in the opposite direction, as
though it had bounced on contact with the wall. The final line of
the main loop jumps back to the beginning of the animation pro-
cess, so the process will continue until either the BREAK or
RESET key is pressed.

We can make the animation even more sophisticated by
moving the pixel in both the horizontal and vertical directions,
and giving it both horizontal and vertical walls to bounce off.
Here is a program that bounces our pixel around inside a rectan-

gle:

10 GRAPHICS 3 + 16

20 SETCOLOR 4,0,0

30 SETCOLOR 0,8,8

40 SETCOLOR 1,8,8

50 COLOR 1 : REM COLOR FOR RECTANGLE

60 PLOT 0,0 : REM DRAW RECTANGLE

70 DRAWTO 39,0

80 DRAWTO 39,23

90 DRAWTO 0,23

100 DRAWTO 0,0

110 HDIREC = 1 : REM HORIZONTAL DIRECTION

120 VDIREC = 1 : REM VERTICAL DIRECTION

130 HORIZ = 20 : REM INITIAL HORIZONTAL COORDINATE

140 VERTI = 12 : REM INITIAL VERTICAL COORDINATE

150 HORIZ = HORIZ + HDIREC : REM MOVE HORIZONTALLY

160 VERTI = VERTI + VDIREC : REM MOVE VERTICALLY

170 COLOR 2 : REM PIXEL COLOR

180 PLOT HORIZ, VERTI : REM PLOT PIXEL

190 LOCATE HORIZ +HDIREC, VERTI, COLOUR : REM CHECK NEXT
POSITION IN HORIZONTAL DIRECTION

200 IF COLOUR = 1 THEN HDIREC = —HDIREC : REM IF BORDER,
REVERSE HORIZONTAL DIRECTION

210 LOCATE HORIZ, VERTI+VDIREC, COLOUR : REM CHECK NEXT
POSITION IN VERTICAL DIRECTION

220 IF COLOUR = 1 THEN VDIREC = —VDIREC : REM IF BORDER,
REVERSE VERTICAL DIRECTION

230 FOR DELAY = 1 TO 10 : REM DELAY BRIEFLY

240 NEXT DELAY

250 COLOR 0 : REM BACKGROUND COLOR

260 PLOT HORIZ,VERTI : REM ERASE PIXEL

270 GOTO 150

The essential principles behind this program are the same as
those behind the last, except that the direction in which the pixel
moves is now held in two variables. HDIREC contains the direc-

[65]

tion of horizontal motion (equivalent to variable DIRECTION
in the last program), and VDIREC contains the direction of ver-
tical motion (which was assumed to be O in the last program).
The current horizontal and vertical coordinates of the pixel
are stored in variables HORIZ and VERTI, respectively. To
move the pixel, we add the value of HDIREC to HORIZ and
VDIREC to VERTI. This is done in lines 150 to 160. The pixel is
drawn by lines 170 to 180. Then lines 190 to 200 check to see if
we are about to hit the border of the rectangle in the horizontal
direction. If so, the value of HDIREC is reversed. Lines 210 to
220 check to see if we are about to hit the border of the rectangle
in the vertical direction. If so, the value of VDIREC is reversed.
Note that if we are about to hit the border in both directions (i.e.,
if the pixel is headed into a commer), both variables will be
reversed, causing the pixel to bounce straight back the way it
came. Otherwise, it will bounce at an angle. This adds a realistic,
if somewhat idealized, touch to the animation. Run it and see.

READING THE JOYSTICK

We can also add excitement and realism to our animation by
allowing the user of our program to control objects on the dis-
play. In Atari games, such control is commonly exercised by
means of the joystick.

We can “read” the movement of the joystick from within a
BASIC program by using the function STICK. This function is
always equal to a number indicating the direction in which the
joystick is being pushed. We indicate which joystick we wish to
read by placing the joystick number in parentheses immediately
after the word STICK like this:

STICK(1)

This says that we wish to read joystick number 1. On the pre-XL
Ataris, there are four joysticks that we can read, numbered 0O to 3.
On the XL Ataris, there are two joysticks, numbered O to 1.

We use the STICK function in a numeric expression just as
we would use a number or a variable. Typically, we might
write:

A = STICK(0)

This would set variable A equal to the current value of STICK(0).
Variable A could then be used to determine the motion of joy-
stick number O.

Here is a diagram indicating how the value of STICK(X) cor-
responds to the position of joystick number X:

(66]

14

10 6

/15

11 7

13
Values for STICK (X) Based on Joystick Positions

For instance, if STICK(X) is equal to 14, then joystick num-
ber X is pointed directly forward. If it is equal to 11, joystick
number X is pointed to the left. If it is equal to 15, then joystick
number X is centered (i.e., it is not being pointed at all).

ATARI PING-PONG

Here is a program that uses the STICK function to move a pixel
back and forth with the motion of joystick number 0:

10 GRAPHICS 3 + 16

20 SETCOLOR 4,0,0

30 SETCOLOR 0,8,8

40 DIRECTION = 0 : REM HORIZONTAL DIRECTION
50 HORIZ = 20 : REM HORIZONTAL COORDINATE

60 COLOR 1 : REM COLOR FOR PIXEL

70 HORIZ = HORIZ + DIRECTION : REM MOVE PIXEL
80 PLOT HORIZ,12 : REM DRAW PIXEL

90 DIRECTION = 0 : REM STOP PIXEL MOTION

100 JOY = STICK(0) : REM READ JOYSTICK

110 IF JOY = 11 AND HORIZ>0 THEN DIRECTION = —1 : GOTO 140
: REM IF LEFT, THEN MAKE DIRECTION —1

(671

120 IF JOY = 7 AND HORIZ <39 THEN DIRECTION = 1 : GOTO 140 :
REM IF RIGHT THEN MAKE DIRECTION 1

130 GOTO 60 : REM IF NO MOTION, REPEAT

140 COLOR 0 : REM ELSE GET BACKGROUND COLOR

150 PLOT HORIZ,12 : REM AND ERASE PIXEL

160 GOTO 60 : REM REPEAT

Here is a program that combines the bounce technique
described earlier with a joystick reading routine. The result is a
one-player Ping-Pong game in graphics mode 5:

5 REM *** PING-PONG PROGRAM ***

6 REM

10 DIM A$(5)

20 GOSUB 1000

30 YPAD = 17 : REM Y COORDINATE FOR TOP OF PADDLE

35 GOSUB 3000 : SCORE = 0

40 XBALL = 15 : YBALL = 20 : REM STARTING COORDINATES FOR
BALL

50 LASTX = XBALL : LASTY = YBALL

60 YDIR = 1

70 XDIR = 1

80 A = STICK(1)

90 IF A = 13 AND YPAD < 33 THEN COLOR 0 : PLOT 3,YPAD :
COLOR 2 : PLOT 3,YPAD+6 : YPAD = YPAD+1

100 IF A = 14 AND YPAD > 1 THEN COLOR 0 : PLOT 3,YPAD+5 :
COLOR 2 : PLOT 3,YPAD—1 : YPAD = YPAD—1

110 COLOR 0 : PLOT LASTX,LASTY

120 COLOR 2 : PLOT XBALL,YBALL

130 LASTX = XBALL : LASTY = YBALL

140 LOCATE XBALL +XDIR,YBALL,Z : IF Z = 2 THEN XDIR = —XDIR
150 LOCATE XBALL,YBALL+YDIR,Z : IF Z = 2 THEN YDIR = —YDIR
160 XBALL = XBALL+XDIR : YBALL = YBALL + YDIR

170 IF XBALL = 5 AND XDIR = 1 THEN SCORE = SCORE + 1
175 IF XBALL > 1 THEN 80

180 PRINT “GAME OVER!"

185 ? “YOUR SCORE IS "';SCORE

190 ? “PLAY AGAIN (Y/N)"; : INPUT A$: IF A$ = “Y” THEN ?
CHR$(125) : GOTO 20

200 GRAPHICS 0 : END

1000 GRAPHICS 5 : POKE 752,1 : SETCOLOR 0,1,0

1010 SETCOLOR 1,10,5

1020 SETCOLOR 2,0,0

1030 SETCOLOR 4,0,0

2000 COLOR 2

2010 PLOT 2,0

2020 DRAWTO 75,0

(68]

2030 DRAWTO 75,39

2040 DRAWTO 2,39

2050 RETURN

3000 COLOR 2 : PLOT 3,YPAD : DRAWTO 3,YPAD+5
3010 RETURN

To play the game, plug the joystick into port number 2 and
RUN the program. The “paddle” will appear toward the lefi-
hand side of the display; the ball will materialize somewhat to its
right. The ball will bounce off the walls bordering the playfield,
then return in the direction of the paddle. You must hit the ball
with the paddle each time it bounces in your direction, or it will
disappear off the edge of the display and the game will end. When
this happens, you will be given a score, based on the number of
times you have successfully returned the ball.

Here is a line-by-line explanation of the program:

Line 10—Dimensions A$ for later use.

Line 20—Calls initialization subroutine to draw display and set
color registers.

Line 30—Establishes location of paddle in variable YPAD,
which is set equal to the Y coordinate of the upper end of the
paddle.

Line 35—Draws paddle. Sets SCORE equal to 0.

Line 40—Sets XBALL and YBALL equal to the horizontal and
vertical coordinates of the ball, respectively.

Line 50—Sets LASTX and LASTY equal to the most recent posi-
tions of XBALL and YBALL.

Line 60—Sets YDIR equal to the vertical direction of the ball.
Line 70—Sets XDIR equal to the horizontal direction of the
ball.

Line 80—Reads joystick into variable A.

Line 90—Checks to see if joystick is pointed downward. If so,
and if the paddle is not yet at the bottom of the playfield (YPAD
= 33), then it moves the paddle down one position.

Line 100—Checks to see if the joystick is pointed upward. If so,
and if the paddle is not yet at the top of the playfield (YPAD =
1), then it moves the paddle up one position.

Line 110—Erases image of ball at LASTX and LASTY coordi-
nates.

Line 120—Draws new image of ball at XBALL and YBALL coor-
dinates.

Line 130—Sets LASTX and LASTY to the most recent positions
of XBALL and YBALL.

Line 140—Checks next ball coordinate in horizontal direction. If
it is either wall or paddle (i.e., if LOCATE indicates that color
register 2 is in use), the ball bounces in the horizontal direc-
tion.

[69]

Line 150—Checks next ball coordinate in vertical direction. If it
is either wall or paddle, the ball bounces in the vertical direc-
tion.

Line 160—Moves the ball in the horizontal and vertical direc-
tions.

Line 170—Checks to see if ball has been hit by paddle (the only
situation in which XBALL = 5 and XDIR = 1 will both be true).
If so, adds one to SCORE.

Line 175—Verifies that ball has not run off playfield. If so, repeat
the main loop (lines 80 to 175).

Line 180—1If ball is off playfield, game is ended.

Line 185—Score is announced.

Line 190—Player is offered a chance to play again. Response is
input to variable A$. If the response is Y then display is cleared
and game begun again.

Line 200—Otherwise, program terminates. Graphics 0 is
restored.

Lines 1000 to 2050—Subroutine to set colors and graphics mode
(mode 5), and to draw walls around playfield.

Lines 3000 and 3010—Subroutine to draw the paddle.

Although this is not the fastest moving, most challenging
game you will ever play on your Atari, it illustrates the principles
on which many animation games are based. The player controls
the movement of at least one animated object with a joystick,
while objects on the display interact in a series of collisions,
which creates changes in the motions of those objects. Points are
awarded for certain beneficial interactions, and a predetermined
condition terminates play.

THE SOUND STATEMENT

One additional feature that might make our game more interest-
ing would be sound effects. Atari BASIC generates sound effects
with the SOUND statement. The syntax for the SOUND state-
ment is

SOUND voice,pitch,distortion,volume

Voice is a numeric expression indicating which of the Atari’s
four sound generators (or “voices”) you wish to use to generate
the effect. (You may, if you wish, use more than one of these
voices at a time, by activating each in a separate sound state-
ment.) The voices are numbered 0 through 3; any of the four will
produce identical results.

Pitch is a numeric expression evaluating to a number from 0
to 255, where the lower numbers produce higher-pitched sounds.
Distortion is a number from 0 to 14 establishing the distortion of

[70]

the tone. Volume is a number from 0 to 15 that establishes the
loudness of the sound. High numbers are louder than low num-
bers. Volume 0 produces no sound at all.

Since the subject of this book is graphics and not sound, we
will not further explain the theory of the SOUND statement.
However, the interested reader is invited to experiment with its
use. Note that once you have turned on a sound via the sound
statement, you can turn it back off only by setting the volume
back to 0, like this:

SOUND 1,A,B,0

where A and B are any values in the appropriate range for the
pitch and distortion expression. The 0 volume will turn off the
sound from voice 1 until another sound statement is executed.

To add sound to our Ping-Pong program, make the following
changes:

140 LOCATE XBALL+XDIR, YBALL, Z : IF Z = 2 THEN XDIR =
—XDIR : GOSUB 4000
150 LOCATE XBALL, YBALL+YDIR, Z:IF Z = 2 THEN YDIR =

—YDIR : GOSUB 4000

4000 SOUND 1, 100, 10, 15
4010 FOR 1 = 1TO 2 : NEXT |
4020 SOUND 1,100,1,0

4030 RETURN

The subroutine at lines 4000 to 4030 turns on voice 1 and leaves
it on just long enough to produce a bouncing noise when the ball
strikes the border or the paddle. Try it and see.

Suggested
Projects

1. We can produce animation with PRINT graphics as
well as PLOT graphics, the primary difference being that
with PRINT graphics we change the coordinates of a
POSITION statement, rather than the coordinates of a
PLOT statement. Rewrite the Ping-Pong program in this
chapter using PRINT graphics rather than PLOT graph-
ics. Use a graphics character for the ball. Remember that
the LOCATE statement functions somewhat differently
in text mode: it returns the ATASCII code number of the
character in the specified position, rather than the color
register in use.

2. If you are successful with the previous exercise, try a
more ambitious animated game using PRINT graphics.
For instance, you might try a Space Invaders—-style game
where you control a laser at the bottom of the display
that is under attack by a randomly moving spaceship at
the top of the display, which is bombarding you with
bombs. To fire lasers form your base, use the BASIC
function STRIG(X), which reads the trigger button on
joystick X. If STRIG(X) is equal to 1, then the button on

joystick X is being pressed; if STRIG(X) equals 0, it is
not being pressed.

3. Rewrite the Ping-Pong game using the lower resolution
graphics mode 3. Note that the screen coordinates will be
different in this mode. How does the use of lower resolu-
tion change the action of the game? Does it speed it up?
Slow it down? Is the game more exciting? Is it more inter-
esting visually?

4. The Ping-Pong game presented in this chapter lacks
certain random factors. The pattern of the ball is always
the same, because it starts in the same place and bounces
in the same pattern every time it strikes a wall or a pad-
dle. Add a random factor to the game using the RND
function. Start the ball at a random position, heading in a
random direction. Change the way the ball bounces
depending on what portion of the surface of the paddle it
strikes.

5. Rewrite the Ping-Pong game so that it can be played by
two players using two joysticks. One player will have a
paddle at the left end of the playfield while the other will
have a paddle at the right end of the field. Keep a sepa-
rate score for each player, based on how many times his
or her opponent has missed the ball, as in a real Ping-
Pong game. Terminate the game when one player reaches
an appropriate score, such as 21.

innn

MEMORY

As we saw in the Introduction, graphics on the Atari computers
are controlled by two integrated circuits—chips, if you will—
inside the computer. These integrated circuits are called ANTIC
and GTIA.

ANTIC and GTIA take information passed to them by the
operating system (or, in some instances, by the programmer) and
convert that information into a video signal, which is output to
the video monitor (or television set) that you are using as a dis-
play. It is these chips that create the images of the graphics char-
acters, the text characters, and any other characters that we place
on the video display. They determine the color, shape, and posi-
tion of these images. They determine the mode in which these
images are output. They translate information provided by our
PLOT statements into illuminated pixels on the display. In short,
it 1s ANTIC and GTIA that are ultimately responsible for every-
thing that you see on the screen.

Up until now, we have not worked directly with these chips;
we have allowed the OS to do this for us. If we are to employ
more complex graphic techniques, however, it will be necessary
for us to open a direct line of communication with these chips, so
that we can tell them precisely what sorts of graphic images we
want. And the channel that we will use for this communication is
memory.

[74]

THE ANATOMY OF MEMORY

What is memory? It is a series of electronic circuits, inside the
computer, that can be used to store numbers in an encoded form.
Since all information processed by a computer must first be con-
verted into numbers (a process that happens automatically as we
enter data into the computer), memory can be used to store any
kind of information, including programs, that we put into it.

When you type a computer program on the Atari—or load a
computer program from a disk or tape—that program is stored in
memory as a series of numbers. When, in turn, you use a program
to save other types of data, such as word processing documents,
spreadsheet figures, even graphics, that information is also stored
in memory as a series of numbers.

Specifically, computers store information as binary numbers.
Binary is a numbering system similar in principle to the decimal
numbering system we ordinarily use for counting, but different in
several particulars. For instance, binary uses only two different
digits (0 and 1), rather than the ten different digits (0 through 9)
used by the decimal numbering system. All binary numbers are
made up of combinations of these two digits. Here are some
examples of binary numbers:

1

110
101101
11101101

The first of these, 1, is equivalent to the decimal number 1. The
second, 110, is equivalent to the decimal number 6. The third,
101101, is equivalent to the decimal number 45. And the fourth,
11101101, is equivalent to the decimal number 237.

In computer parlance, a single binary digit is called a bir.
Each memory circuit in the Atari is constructed in such a way
that it can hold no more than eight bits, or a byte, in computer
lingo. This means that the smallest number that can be held in a
single memory circuit is 00000000, equivalent to the decimal
number 0, and the largest number that can be held in a memory
circuitis 11111111, equivalent to decimal 255. Thus, we can say
that each memory circuit can hold a number in the range 0 to
255.

A computer such as the Atari is designed in such a way that it
can have 65,536 memory circuits active at any one time. This is
equivalent to 64 kilobytes, or K, for short. (A kilobyte is equal to
1,024 bytes.) The Atari 800XL is a 64K computer, though some
of the earlier Ataris contained less than this theoretical maxi-
mum. Each of these memory circuits is given an identifying num-

[75]

ber, called an address. The first memory circuit in the machine is
given an address of 0, the second an address of 1, all the way to
the final address of 65,535. (The 65,536th address is 0.)

This assigning of addresses makes it easier for the program-
mer to store values at specific addresses and retrieve those values
later—a common activity in machine language programming.
(Machine language is the native language of the computer, con-
sisting of numeric commands directly executed by the central
processing unit, or CPU, of the computer.)

THE PEEK FUNCTION

You can see the actual contents of your computer’s memory,
from Atari BASIC, by using the PEEK(X) function. The
PEEK(X) function is automatically set equal to the value stored
in memory address X. For instance, this statement

PRINT PEEK(49152)

will print the contents of memory address 49152. And this state-
ment:

C = PEEK(G+5)

will set variable C equal to the contents of the address obtained
by adding the value of variable G to 5.

By placing the PEEK function inside a loop, we can print out
an entire range of memory. Here, in fact, is a program that will
print out the entire 64K of the computer’s memory:

10 FOR | = 0 TO 65535
20 PRINT PEEK()) ;
30 NEXT |

Before you run this program, be warned that it takes several
minutes to complete its task—and the numbers that it will print
will not be especially meaningful to you, though they are very
meaningful to the computer.

THE POKE STATEMENT

The BASIC command POKE can be used to alter the contents of
memory: it places a specified value at a specified memory
address. It is used in this form:

POKE address, value

[76]

where “address” is the memory address to be changed and “val-
ue” is the value you wish to place in that address. The value may
not be greater than 255.

For example, this command

POKE 14400,C

will place the value represented by variable C in memory location
14400. If variable C is greater than 255 (or less than 0), Atari
BASIC will return an error message. Note that you must be
extremely cautious when poking values into memory, as you may
disrupt important information contained there. In fact, a mis-
guided POKE can cause the computer to freeze up, so that you
will have to turn it off and back on again to regain control. This
won’t hurt the computer, but it will destroy any important infor-
mation (such as laboriously constructed programs) that may have
been stored there. It is a good idea to save programs and other
data to disk or tape before poking around in memory. We’ll be
using both the PEEK and POKE commands frequently in the
remainder of this book, to create graphics.

As a rule, there are two types of memory in every computer:
random access memory (or RAM) and read-only memory (or
ROM). RAM is sometimes called “user memory,” because it is
the memory that you use to store programs and the data pro-
cessed by those programs. RAM can be altered, by the POKE
command or by machine language instructions. ROM cannot be
altered, but can only be read—that is, values stored in ROM may
be retrieved but not changed. ROM is generally used for storing
very important programs and data that will frequently be used in
the normal functioning of the computer.

The Atari computers use ROM memory to store the operat-
ing system and the character set, as well as the BASIC interpreter.
On the pre-XL. Atari computers, this BASIC ROM was installed
inside a cartridge, so that it could be removed from the computer
when not in use. On the more recent XL models, this BASIC
ROM is built into the machine, although you can remove it from
the computer’s “memory space’” by holding down the OPTION
key when you turn on the computer, which causes the BASIC
ROM to be replaced by 8K of RAM memory.

Although memory is primarily used for storing data and pro-
grams, there is a third use to which it can be put: memory mapped
input/output. This simply means that we can use the computer’s
memory to pass information to external devices, such as the vid-
eo display or the disk drives.

This is how we will communicate with ANTIC and GTIA.
We will store values in memory, and these values will be passed
automatically to these chips. Depending on the specific memory

(77

address in which we store these values, they will be interpreted in
different manners, but all of these messages that we will send to
the graphics chips will concern the graphic images we wish to
place on the computer display.

VIDEO MEMORY

The most common method of passing information to the graph-
ics chips is through video memory. In text mode, video memory
is a series of memory addresses, each of which corresponds to one
of the character positions on the video display. By placing a spe-
cial code number for a character in a given memory address with-
in video memory, we are effectively telling the graphics chips to
display that character in that position on the screen. (As we’ll see
in a minute, these code numbers are not quite the same as the
ATASCII code.)

Ordinarily, this is done automatically by the OS. For
instance, when we tell the BASIC interpreter to PRINT
“WORD?”, the BASIC interpreter tells the operating system
(which is, you will recall, a large machine language program) to
put the codes for the characters W, O, R, and D into four succes-
sive addresses in video memory, beginning with the address
equivalent to the current cursor position on the display. This, in
turn, tells the graphics chips to output the images of these char-
acters to the monitor.

If we wish to do so, we can place ATASCII values directly
into video memory with the POKE statement, bypassing the OS
altogether. This isn’t as simple as it sounds, since video memory
can be placed almost anywhere in the Atari memory. If we do not
like the current location of video memory, we simply tell the
graphics chips to move it to a different address. Otherwise the
operating system will put video memory into the best location it
can find for it. In this book, we will simply let the OS do this work
for us.

How do we know where to find video memory? This infor-
mation is stored by the OS at memory addresses 88 and 89. We
can determine the starting address of video memory with this
statement:

VIDMEM = PEEK(88) + 256 * PEEK(89)

This sets VIDMEM equal to the address of the video memory

location that controls the upper left-hand corner of the display.
As an experiment, clear the display by typing CONTROL-

“<”. Type the following in the immediate mode:

VIDMEM = PEEK(88) + 256 * PEEK(89) : POKE VIDMEM,1

[78]

The Atari character set

and press RETURN. In the upper left-hand corner, an exclama-
tion point (“!”’) will appear.

Why an exclamation point? The ATASCII code for “1” is 33,
yet the number we POKEGd into the first position of video mem-
ory was 1. What a curious result!

As mentioned briefly before, the codes used for placing char-
acters in video memory are not the same as the ATASCII codes.
This is somewhat confusing. The codes used in video memory
are called the Atari screen codes. Fortunately there is a fairly sim-
ple correspondence between the ATASCII codes and the screen
codes. ATASCII codes can be converted to screen codes with the
following subroutine, where ACODE equals the ATASCII code
1o be converted and SCODE is its screen code equivalent:

1000 IF ACODE<32 THEN SCODE = ACODE + 64 : RETURN
1010 IF ACODE <96 THEN SCODE = ACODE — 32 : RETURN
1020 SCODE = ACODE : RETURN

Here is a short program that will poke all 256 screen codes
into video memory, in order, in eight rows of thirty-two charac-
ters apiece. Hit RESET before running this program:

10 GRAPHICS 0 : POKE 752,1 : ? CHR$(125);

20 VIDMEM = PEEK(88) + 256 * PEEK(89)

30 ADDRESS = 44 : COUNT = 0

40 FOR | = 0 TO 255

50 POKE VIDMEM +ADDRESS, |

60 ADDRESS = ADDRESS + 1

70 COUNT = COUNT + 1

80 IF COUNT = 32 THEN ADDRESS = ADDRESS + 8 : COUNT = 0
90 NEXT |

100 GOTO 100

(791

By keeping count of the number of characters poked into
each row, and jumping ahead eight memory addresses after each
row of thirty-two characters is poked, this program neatly
formats the characters on the display. The first row of characters
may seem to be slightly indented. This is because the first char-
acter in the Atari character set is a blank space and is therefore
effectively invisible.

MODES AND MEMORY

The size and organization of video memory varies according to
the graphics mode that we are currently using. When we change
modes via the GRAPHICS statement, the OS automatically takes
care of all housekeeping details concerning video memory, such
as deciding where in memory it must reside and how much space
it will take up. A mode O display requires 960 bytes of video
memory, one for every character in twenty-four rows of forty
characters apiece. It shouldn’t be hard to deduce, then, that a
full-screen mode 1 display would require 480 bytes of memory,
one for every character in twenty-four rows of twenty characters
apiece. And a mode 2 display, naturally enough, requires 240
bytes of memory, one for every character in twelve rows of twen-
ty characters apiece.

In mode 0, the first forty bytes of video memory represent the
first row of the display, the second forty bytes of video memory
represent the second row of the display, and so forth. Here is a
program that fills the first row with A’s.

10 GRAPHICS 0 : POKE 752,1 : ? CHR$(125);
20 VIDMEM = PEEK(88) + 256 * PEEK(89)
30 FOR | = 0 TO 39

40 POKE VIDMEM+1, 33

50 NEXT |

60 GOTO 60

In modes 1 and 2, however, the first twenty bytes of video
memory represent the first row, the second twenty bytes the sec-
ond row, etc. Change line 10 of the last program to read

10 GRAPHICS 1 + 16

and RUN it. This time the first two rows should fill up with A’s.
But now the A’s are twice as wide.
Similarly, if we change line 10 to

10 GRAPHICS 2 + 16

(80]

and RUN it, the first two rows again fill up with A’s, but the
characters are now twice as tall as well.

BITMAP MEMORY

How does video memory work in a bitmap mode? In quite a
different manner than in text mode. While in text mode, each
byte of video memory describes a character via its screen code.
While in bitmap mode, the individual bits in video memory
describe the colors of the individual pixels. Hence the term bit
map.

The manner in which these bits describe colors varies accord-
ing to the mode that we are in. In mode 8, each bit determines
which color register will be used for the corresponding pixel. A 0
bit indicates the background color, a 1 bit the foreground color.

Just as in text mode the first byte of video memory describes
the first character in the first row of characters on the display, in
mode 8 the first byte of video memory describes the first eight
pixels in the first row of pixels on the display. Suppose, for
instance, that the first byte of video memory contains the number
186. In binary, the number 186 becomes 10111010. In mode 8,
this would mean that the pixel in the upper left-hand comer of
the display would have the foreground color, but would be fol-
lowed by a pixel in the background color, which would in turn be
followed by three pixels in the foreground color, one pixel in the
background color, one pixel in the foreground color, and one pix-
el in the background color. The next eight pixels in the first row
are determined by the second byte of video memory.

To illustrate this, RUN this program:

10 GRAPHICS 8

20 VIDMEM = PEEK(88) + 256 * PEEK(89)
30 POKE VIDMEM, 186

40 GOTO 40

A series of tiny, nearly indistinguishable pixels will appear in
the upper left-hand corner of the display. They are so tiny, in fact,
that it is difficult to determine whether they follow the pattern
that we just described. Here is a program that fills the mode 8
display with random pixel patterns:

10 GRAPHICS 8 + 16

20 VIDMEM = PEEK(88) + 256 * PEEK(89)
30 FOR | = 0 TO 7679

40 POKE VIDMEM+], INT(RND(1)*256)

50 NEXT |

60 GOTO 60

RUNning the author’s random-pixel-pattern
program will give you a display like this.

This program is slow, but it makes its point. You will be for-
given if you hit BREAK (or RESET) before it finishes filling the
display. Here is a program that draws a more distinctive pattern
on the mode 8 display:

10 GRAPHICS 8 + 16

20 VIDMEM = PEEK(88) + 256 * PEEK(89)
30 FOR | = 0 TO 7679

40 POKE VIDMEM+1, 240

50 NEXT |

60 GOTO 60

Bear in mind, as you watch this program execute, that the binary
representation of 240 is 11110000. (Notice, also, that this pro-
gram is considerably faster than the last, because it no longer has
to generate a random number on each pass through the loop.)

Video memory in mode 8 is 7,680 bytes long. This may seem
a little odd at first, since there are 61,440 pixels on the mode 8
display. However, 1 byte of video memory can describe 8 mode 0
pixels, so the number of bytes required is actually 61,440 divided
by 8, or 7,680.

The two-color modes use video memory in the same fashion
as mode 8, except that fewer bytes are used to describe a line.
Mode 6, for instance, with 160 pixels (20 bytes) on ninety-six
lines, requires 1,920 bytes of video memory, with each 0 once

[82]

again representing background color and each 1 representing
foreground color.

The four-color modes work somewhat differently. In a four-
color mode each pair of bits represents a color. Because there are
four possible combinations of two bits—00, 01, 10, and 11—a bit
pair may represent four possible color registers. Thus, each byte
in a four-color mode represents only four pixels. Similarly, the
sixteen-color modes offered by GTIA require four bits to describe
each color register, using the sixteen possible combinations of
four bits. Each byte, therefore, can represent only two pixels.

Now that you have read this information, you will be glad to
hear that you will not be called upon to create graphics displays
by changing the values of individual bits in video memory—at
least not while programming in BASIC. (If you ever find yourself
working in machine language, this information may come in
handy.) It is much easier, and generally faster, to let the OS
decide what bits in video memory need to be changed in order to
produce colored pixels at the proper coordinates on the graphics
display. So we will continue setting pixels using the PLOT state-
ment, and placing characters on the display via the PRINT state-
ment. However, in the next chapter, when we study the display
list, it will nonetheless prove useful to understand how video
memory is arranged, because we will be playing a few tricks on
the OS that may make it a little . . . well . . . confused.

IMPORTANT ADDRESSES

In addition to video memory, there are several other memory
locations within the Atari that we can manipulate for important
purposes. Some of these are the OS variables. These are simply
locations, usually at very low memory addresses, where the OS
stores important numbers. By reading these numbers using the
PEEK function, we can learn valuable information. By changing
them with the POKE command, we can achieve significant
results.

One such location is at addresses 88 and 89, where the
address of video memory is stored by the OS, as we saw above.
Here are some other important addresses:

106 (RAMTOP)—This contains the address, divided by 256, of
the highest RAM address available in your machine. Because
some of the earlier Atari models contained less than the full 64K
of RAM, the value at this address can be used to determine where
memory ends, like this:

RAMTOP = 106 * 256

[83]

By changing the value at this address, we can fool the OS into
thinking that there is less memory in the computer than there
actually is. We generally do this when we need a certain amount
of memory for our own purposes, as we shall see in later chapters.
To reserve 1K of memory above RAMTOP, we could write

POKE 106, PEEK(106) — 4

This tells the operating system that there is 1K less memory in
the machine than there actually is. (Because the address is
divided by 256, subtracting 1 from it actually subtracts 256 from
the address.)

82 (LMARGN)—This tells the OS where the left margin of the
mode O text display begins. The value at this location is usually
set at 2, which is why the leftmost two spaces on the mode 0
display are usually not printed on by the OS. To move the margin
all the way to the left side of the display, type

POKE 82,0

Immediately after this instruction is executed, the cursor will
move all the way back to the left-hand margin and print all fur-
ther screen output using all forty columns of the display. Try it
and see. To enlarge the margin to ten spaces, type

POKE 82,10
Hit RESET to cancel the effect.

83 (RMARGN)—This tells the OS where the right margin of the
mode O display is. The value at this location is normally 39. To
create a ten-column display, type

POKE 82,20 : POKE 83,30

and see what happens. LIST a program (or type one) to see what a
ten-column display looks like. To restore the ordinary values, hit
RESET, or type

POKE 82,2 : POKE 83,39

87 (DINDEX)—Contains the current display mode number. The
default value, after hitting RESET, is 0, indicating that the dis-
play is in mode 0. Though this location can be used to read the
current mode (if, for instance, your program does not know what

[84]

mode it is running in and must find out), it should not be used to
change the mode.

The preceding are only a sampling of the OS variables that we
can PEEK and POKE in the Atari’s memory. Entire books have
been written on this subject; these are only the locations that are
relevant to our purposes in this book.

In addition to the OS variables, we can also use the Atari’s
memory to control graphics through the display list, and the char-
acter set. These are just some of the exciting features of Atari
graphics to be discussed in the next two chapters.

Suggested
Projects

1. Write statements in Atari BASIC that will accomplish
the following:

a. Set the mode 0 margins to 9 (left) and 35 (right).

b. Lower the top of the available memory by 2K
(2,048 bytes).

c. Determine the current display mode and save
the mode number in variable MODE.

2. Write a program that POKEs the entire Atari character
set onto the mode 1 display. How does the character set
produced by this program differ from a mode 1 character
set produced by the CHR$ function?

3. Write a program that uses the POKE command to
create patterns on the mode 3 bitmap display. Experi-
ment to see what different patterns can be created by dif-
ferent numbers.

Lt

THE
DISPLAY
LIST

| IIIIJ[

In the introduction, we referred to the Antic and GTIA chips as
small computers in their own right. This was no exaggeration. In
fact, Antic even has its own program, which resides in the Atan’s
memory like any other program. Using the PEEK and POKE
commands, we can examine and alter this program, gaining con-
siderable power over the Antic chip. .

The program for Antic is called the display list; it tells Antic
in which graphics mode it should output each line of the display.
By manipulating this program we can create custom graphics
modes on the Atari video display. No longer need we be bound
by the OS graphics modes. We can create new combinations of
the modes that we have studied in earlier chapters and even
create new modes not provided by the OS.

Before we can understand the display list, however, we must
first understand the way your video monitor generates a pic-
ture.

MODE LINES

Turn on your Atan, if you haven’t done so already, and look
carefully at the display. If you study it very closely, you will
notice that the picture is made up of thin horizontal lines. In fact,
you may already have noticed these lines while watching televi-
sion programs. On a standard television there are 256 of these

[87]

lines. (Technically, there are 512 lines, though if you count the
lines you see on the display you will at most count 256. This
discrepancy is caused by a phenomenon called interlace, which
makes 512 lines look like 256. However, we will not be discussing
interlace; instead, we will simply treat the video display image as
though it were made of 256 lines, which for all practical purposes
it is.)

The lines that make up the display image are called rasrer
scan lines, though we will refer to them here simply as scan lines.
They are produced by a beam of electrons shooting out of an
electron gun inside the display. The inside of the display screen is
coated with color phosphors; as the electron beam strikes the
phosphors, it causes them to glow. A powerful magnetic field
pulls the beam from side to side and up and down on the display,
so that it strikes all of the phosphors inside the screen, painting a
complete image. Because it moves primarily from side to side,
moving further down the display for each horizontal stroke, the
image seems to be made up of horizontal lines.

It may seem difficult to believe that the entire image on the
display is created by a single beam of electrons, but this is in fact
the case. Bear in mind that the beam moves very quickly; before
the phosphors have time to lose their glow, the beam has begun
painting a new image. The beam creates a fresh picture sixty
times a second.

The electron beam starts its journey at the upper left-hand
corner of the display. It then travels from the left side of the dis-
play to the right, drawing a complete scan line as it travels. Once
at the right-hand side of the display, the beam is turned off, so
that it can be repositioned at the left-hand side to draw the next
line. The period during which this repositioning takes place is
called the horizontal blank, because there is no picture being
painted on the display during this interval.

Once repositioned, the beam draws another scan line from
left to right, directly underneath the previous scan line. This pro-
cess continues until the entire display has been covered with scan
lines and the beam is at the lower right-hand corner of the dis-
play. Once again, the beam is turned off, this time to be reposi-
tioned back at the upper left-hand corner, so that it can draw the
next screen. The interval during which this repositioning takes
place is called the vertical blank; it is considerably longer than the
horizontal blank, though neither takes more than the tiniest frac-
tion of a second.

The scan lines created by the electron beam are actually
wider than the video display itself; they run off the edges on both
sides. This phenomenon, called overscan, is more pronounced on
older televisions, where there has been a certain loss of picture
tube quality, but it is present to some degree on all video displays.

(88]

This is why the portion of the Atari display allotted to text and
graphics does not fill the entire screen; if it did, information
would be lost where the scan lines disappear.

Assuming that your Atari is in mode O (hit RESET if it is
not), type a few characters on the video display. Study the char-
acters in relation to what you just learned about how the display
image is created. Note that each mode O character is eight scan
lines tall. (Some of these lines may contain only background
color, but they are nonetheless part of the display space allotted
to that character. The cursor is a good example of a character in
which all eight lines are shown in foreground color.) Roughly
speaking, then, we can say that a line of mode O characters is eight
scan lines in height.

Now RUN the following program:

10 GRAPHICS 2
20 PRINT #6; “THESE ARE MODE 2 CHARACTERS."”

The mode 2 characters that you are now looking at are twice as
tall as the mode O characters; a line of mode 2 characters is there-
fore sixteen scan lines in height. (Mode 1 characters, because they
are the same height as mode O characters, are only eight scan lines
in height.)

Similarly, the pixels in mode 8 are each a single scan line in
height. The pixels in modes 6 and 7 are each two scan lines in
height. The pixels in modes 4 and 5 are each four scan lines in
height. And the pixels in mode 3 are eight scan lines in height
(same as the characters in mode 0).

What is the point of all this comparison of scan lines? That
will become apparent in time. For now, let’s simply start thinking
of the Atari display as being divided into two different types of
lines: scan lines, which are created by the electron gun, and mode
lines, which are made up of a series of characters (or pixels) that
are each a certain number of scan lines in height, depending on
which mode we are in. In mode 0, the mode line is eight scan
lines in height; in mode 2 the mode line is sixteen scan lines in
height; in mode 7 the mode line is two scan lines in height; and so
forth.

And that brings us back to the display list.

Display lists are created in the Atari’s memory by the operat-
ing system. Every time we execute a GRAPHICS statement to
create a new mode, the OS generates a display list to describe that
mode to Antic. To find the display list in the Atari’s memory, we
must PEEK at locations 560 and 561. We can obtain the address
of the display list by typing:

DISPLIST = PEEK(560) + 256 * PEEK(561)

(891

The display list is a list of numbers. The Antic chip, however, sees
these numbers as instructions.

To see what a display list looks like, type and RUN this pro-
gram:

10 GRAPHICS 0

20 DISPLIST = PEEK(560) + 256 * PEEK(561)
30FOR I =1TO 31

40 PRINT PEEK(DISPLIST + 1); *";
50 NEXT |

You should see a series of numbers that looks like this:

1121121126664 1562222222222
22222222222226532156

This is the display list. What it does may not be immediately
apparent. (If you have less tham48K memory in your Atari, the
display list that you see may look a little different than this.)

What it does, primarily, is to tell Antic what sort of mode
lines it is expected to put on the display. Rather than specifying a
graphics mode for the entire display, as we do with the GRAPH-
ICS command, the display list specifies the mode for every indi-
vidual mode line.

You will notice that there are a lot of 2’s in the display list.
From this evidence, you might surmise that the number 2 is very
important to Antic. In fact, the number 2 is the display list’s way
of representing mode 0. Unfortunately, the display list uses dif-
ferent numbers for the Atari graphics modes than the operating
system does, which can lead to some confusion. (From now on,
we will refer to the display list method of numbering the modes as
the Antic modes and the operating system method of numbering
the modes as the OS modes.) Essentially, this display list tells
Antic that every mode line on the display is to be in OS mode 0.
And, if you count the number of 2’s in the display list, you will
see that there are twenty-three of them, which is just one less than
the number of mode lines in OS mode 0. What happened to the
twenty-fourth line? We’ll see in a moment.

THE LANGUAGE
OF ANTIC

Let’s look at the display list, instruction by instruction. The first
part of the display list consists of the number 112 repeated three
times. Each 112 instruction tells Antic to output eight blank scan
lines to the video display, for a total of twenty-four blank scan
lines. These are the blank lines at the very top of the display,

[90]

above the area where text and graphics are displayed. Some of
these lines may be off the top of your display.

The next entry in the display list is 66. Although this may
look like a single instruction, Antic sees it as two instructions,
added together. One of these instructions is a 2, which (as we saw
earlier) tells Antic to output a mode line to the display in OS
mode 0 (Antic mode 2). And, sure enough, the first mode line of
the display is in OS mode 0. The other instruction is a 64. (Note
that 64 plus 2 equals 66.) This instruction tells Antic that the two
bytes of memory that follow contain the address of video mem-
ory, so that Antic will know where to go to fetch the video image.
These two bytes contain the numbers 64 and 156. (On machines
with less than 48K memory, these numbers will be different.)

Although our program prints these bytes as two separate deci-
mal numbers, they are actually one long binary number, spread
across two memory addresses. To see these binary numbers as a
single decimal number, we must perform a simple arithmetic
operation, which we have already used in several of our PEEK
routines: multiply the second number by 256 and add the two
numbers together. This gives us an address of 40000. This is the
same number that appears at addresses 88 and 89, where we ordi-
narily find the address of video memory.

To verify that this actually is the address of video memory,
type

POKE 40000,1

and press RETURN. Sure enough, an exclamation point will
appear in the upper left-hand corner of the display. (Once again,
if you have less than 48K memory in your computer, you will
arrive at different figures, but the principle will be the same.)

The next twenty-three numbers in the display list are also 2’s,
telling Antic to output twenty-three more mode lines in OS mode
0, for a grand total of twenty-four lines in this mode. You can
verify that this is the case by looking at the display, which should
contain twenty-four lines in what you have by now come to rec-
ognize as OS mode 0.

After the mode lines have been dispensed with, the next
instruction is a 65. This is a kind of GOTO instruction: it tells
Antic to wait for the next vertical blank (the interval during
which the electron beam is repositioned at the top of the display)
and go to the top of the display list, where it will execute the
instructions in the list-all over again. The two bytes following this
instruction contain the address of the top of the display list.
Using the method described a moment ago, we can calculate this
address as 32 + 256 * 156, or 39968. This should be the same
number contained at addresses 560 and 561, where we ordinarily

[91]

PEEK the address of the display list. By placing a different
address here, we could actually have two display lists in memory
at once, and alternate rapidly between them. This is rarely done,
however.

A SPLIT-SCREEN LIST

Let’s look at a second display list. Type and RUN this pro-
gram:

10 GRAPHICS 1

20 DISPLIST = PEEK(560) + 256 * PEEK(561)
30FORI =0TO 33

40 PRINT PEEK(DISPLIST + 1); “ ';

50 NEXT I

60 GOTO 60

The display list revealed by this program should look like this on
a 48K or larger machine:

112112 1127012815766 6666666 6
6666666666696 1592226594 157

Once again, we start out with twenty-four blank scan lines.
This is followed by a 70, which is actually 64 plus 6. The 64 tells
Antic that video memory is at 128 + 256 * 157, or 40320. The 6
tells it to output a mode line in Antic mode 6, which is OS
mode 1. The following nineteen lines are also in Antic mode 6.
This corresponds to the twenty lines of your display that should
now be in OS mode 1. At this point in the display list, however,
something odd happens. We see a 66 instruction, which is a 64
plus a 2. This tells Antic to move video memory to 96 + 256 *
159, or 40800. This new video memory is used for the remaining
four lines of the display. The 2 tells Antic to output a line in Antic
mode 2, which (you’ll recall) is OS mode 0. The next three
instructions output three more lines in OS mode 0. These four
lines, altogether, make up the mode 0 text window at the bottom
of the display.

This is how the split-screen effect of the text window is
created. The OS creates a display list that tells Antic to output
twenty mode lines in Antic mode 6 (OS mode 1) and four mode
lines in Antic mode 2 (OS mode 0). As far as Antic is concerned,
there is no such thing as a full-screen graphics mode. Every dis-
play is created a mode line at a time, and each mode line is in the
mode that the display list specifies. If we wish, we can create our
own custom display lists, where the mode changes on every line,
generating a display that is part high-resolution text mode (OS

[92]

mode 0), part large text mode (OS mode 2), and part bitmap
mode. We can mix text and graphics together freely on the same
screen, even placing the text above the graphics (instead of using
the OS-generated text window, which is always below the graph-
ics).

BUILDING A DISPLAY

However, certain rules must be followed in creating a custom
display list. If we do not assemble and use our display list in
precisely the right manner, we can crash the entire graphics sys-
tem, sending Antic (or the OS) off to never-never land, from
which it may not return until we hit the RESET key. At the very
least. we will produce some very odd displays.

To begin with, here is a list of the instructions that can be
used in a display list:

0—Output 1 blank scan line
16—Output 2 blank scan lines
32—Output 3 blank scan lines
48—Output 4 blank scan lines
64—Output 5 blank scan lines
80—Output 6 blank scan lines
96—Output 7 blank scan lines
112—Output 8 blank scan lines
2—Output mode line in Antic mode 2 (GRAPHICS
mode 0)
3—Output mode line in Antic mode 3
4—Output mode line in Antic mode 4
5—Output mode line in Antic mode 5
6—Output mode line in Antic mode 6 (1)
7—Output mode line in Antic mode 7 (2)
8—Output mode line in Antic mode 8 (3)
9—Output mode line in Antic mode 9 (4)
10—Output mode line in Antic mode 10 (5)
11—Output mode line in Antic mode 11 (6)
12—Output mode line in Antic mode 12 (14)
13—Output mode line in Antic mode 13 (7)
14—Output mode line in Antic mode 14 (15)
15—Output mode line in Antic mode 15 (8)
O—Jump to instruction at address in next 2 bytes
65—Wait for vertical blank and jump to instruction at
address in next 2 bytes
64—Address of video memory is in next 2 bytes (must
precede mode line output)

The Antic unconditional jump instruction is used to link two
portions of a display list, located at different portions in memory,

(93]

together into a single display list. The only time that you might
want to do this is if the display crosses a 1K boundary, that is, if it
stretches across an address evenly divisible by 1,024. This is an
Antic no-no; the chip cannot continue reading past such an
address. You must direct its attention specifically to the next
address in the display list with a jump instruction followed by the
address in the next two bytes.

Here is a list of the Antic modes and their equivalent
GRAPHICS statement modes:

ANTIC MODE GRAPHICS MODE

Text Modes:

NN WN
[

Bitmap Modes:

—
[\
—

— —
S Pt
—
coOn-dhAhwnbhW

Notice that three of the text modes have no GRAPHICS
statement equivalents; neither do two of the bitmap modes (12
and 14) if you are using a non-XL Atari. Descriptions of all of
these modes, with the exception of Antic modes 3 to 5, can be
found in the chapter on color. Mode 3 is a two-color text mode,
similar to mode 0O, except that each character (and therefore each
mode line) is ten pixels tall, with forty characters per line. Mode 4
is also similar to mode O (with forty characters per line and eight
pixels per mode line), except that you can have four colors on the
display at one time. Mode 5 is a four-color, double-height text
mode: each mode line is sixteen pixels tall, but (unlike mode 2)
the characters are the same width as characters in mode 0O; in
brief, a tall, skinny text mode. You can still place forty characters
on a line in this mode.

GRAPHICS modes 9, 10, and 11 have no equivalent Antic
modes. We can establish these modes by creating a display list for

[94]

Antic mode 15 and POKEing an appropriate value into memory
address 623. Here is a list of the necessary POKEs:

POKE 623,64 : REM GRAPHICS MODE 9
POKE 623,128 : REM GRAPHICS MODE 10
POKE 623,192 : REM GRAPHICS MODE 11

With this information, we can build a display list of our own.
Suppose, for instance, that we wish to create a title screen for a
program with characters displayed in three different sizes. The
title would be in large mode 2 letters, the name of the program-
mer in medium-sized mode 1 letters, and anything else in small
mode 0 letters. None of the OS modes would allow us to create
such a display, because it requires the mixing of three different
text modes on the same display. However, we can create such a
combination of modes easily with a custom display list.

The first three instructions in the list should be 112, 112, and
112, so that twenty-four blank lines will be output to the top of
the display. This should be followed by the instruction 64 and the
address of video memory. Then we must describe each mode line
to Antic, one at a time. To simplify matters, we’ll put all mode
lines in Antic mode 2 (GRAPHICS mode 0), except for one line
in Antic mode 6 (GRAPHICS mode 1) and one line in Antic
mode 7 (GRAPHICS mode 2).

How many mode lines should we include? The rule of thumb
is that the total number of scan lines (not mode lines) on the
display should not exceed 192. If we have more than 192 scan
lines on the display, Antic will continue outputting mode lines
during the vertical blank, and the picture will begin to roll very
rapidly. On the other hand, we may safely put fewer than 192
scan lines on the display, but this reduces the area in which we
may PRINT and PLOT information. It is best to try for exactly
192 scan lines, or as close under that number as we can get.

When we create a display list, we must carefully count the
number of scan lines per mode line. Antic modes 2 and 6 both use
8 scan lines per mode line; Antic mode 7 uses 16. Thus, if we
include one line apiece in modes 6 and 7, they will use 24 scan
lines between them, leaving room for 168 scan lines. Dividing
168 by 8 tells us that we have room left over for 21 lines in Antic
mode 2. The first of these can be indicated simply by adding 2 to
the 64 of the previous instruction, producing an instruction of 66.
The remainder could be apportioned like this: 2, 2,2, 2,2,2,2, 2,
7,2,2,2,2,2,6,2,2,2,2,2,2,2,2.

Finally, we must include a 65 instruction, followed by the
address of the start of the display list. This, as you will recall, tells
Antic to wait for the vertical blank and start executing the display
list all over again.

[95]

For inclusion with a program, we must place this display list
in a DATA statement, like this:

DATA 112,112,64, —1,2,2,2,2,2,2,2,2,7,2,2,2,2,2,6, 2,2, 2,
2,2,2,2,2,65

The addresses of video memory and the display list are not
included in the DATA statement, because these must be calcu-
lated when the program is actually run.

INSTALLING THE LIST

How do we go about putting the display list in place? First, we
must use the GRAPHICS statement to force the OS to generate a
display list of its own. Because the OS will perform most of the
related housekeeping functions for us, we need not worry about
such petty details as finding a safe place in memory to put the list,
or telling Antic where the list is located. What GRAPHICS mode
should we tell the OS that we want? Well, as a rule we should
always ask Antic to create a display list that will be as long as or
longer than the one we are creating. Ideally, it should be exactly
the same length as the one we are creating, but this is not always
possible.

If we plan to display text information, it is also helpful to
have Antic generate a text mode display list. The text mode with
the largest display lists are modes O and 1; hence, we will use
mode O.

We then need a sequence of instructions that will take the
display list in our DATA statements and place it in memory.
Here is one possible sequence:

10 GRAPHICS 0

20 DISPLIST = PEEK(560) + 256 * PEEK(561) : REM GET ADDRESS
OF DISPLAY LIST

30 ADDRESS = DISPLIST : REM POINTER TO START OF LIST

40 FOR | = 0 TO 27 : REM 28 ITEMS IN DATA STATEMENT

50 READ NUMBER : REM READ NEXT ITEM

60 IF NUMBER = —1 THEN POKE ADDRESS, PEEK(88) : POKE
ADDRESS +1,PEEK(89) : ADDRESS = ADDRESS+2 : GOTO 80

70 POKE ADDRESS, NUMBER : REM ADD ENTRY TO DISPLAY LIST
80 ADDRESS = ADDRESS + 1 : REM POINT TO NEXT ADDRESS
90 NEXT |

100 POKE ADDRESS, PEEK(560) : POKE ADDRESS+1, PEEK(561) :
REM ADD ADDRESS OF DISPLAY LIST TO LAST INSTRUCTION
1000 DATA 112,112, 112,66, —1,2,2,2,2,2,2,2,2,7, 2,2, 2, 2, 2,
6.2,2,22,22,2,2,65

[96]

CREATE

CIISTOM MADE

GRAPHIC MODES

USING THE ANTIC MODES

The program for this display incorporates
techniques described by the author.

This routine will POKE the new display list into place over
the old display list. Type the program and RUN it.

Immediately, the display will start to look odd. Two bands of
black will appear near the center. These are the Antic mode 6 and
7 mode lines. Because they draw their background colors from a
different register than Antic mode 2, the background is a different
color in these mode lines than in the surrounding lines.

Now type LIST and press RETURN. You might receive
something of a shock as the text of the program is printed on the
display. The text that prints in the Antic mode 6 and 7 lines is a
different size and color from the text in the other lines. Type
LIST again at the bottom of the display to watch text scroll
upward through the new mode lines. The effect is odd, to say the
least.

An important thing to notice, however, is that text displayed
after the Antic mode 7 line (the first black stripe) is out of place,
as though the left-hand margin had somehow been moved to the
middle of the display. After the mode 6 line (the second black
stripe), the text seems to straighten out again.

Remember that the OS, which is printing these characters on
the display, thinks that the entire screen is in mode 0, because we
have not told it otherwise, In fact, there is no way that we can tell
it otherwise. Thus, it positions the text in video memory on the
assumption that each line contains forty characters of text. How-

[971

ever, two of the lines on the display contain only twenty charac-
ters. The first of these throws the operating system out of phase. It
now believes that the middle of the display is the left-hand mar-
gin. The second twenty-character line compensates for this and
puts the OS back in sync again.

POSITIONING TEXT

As you can imagine, this makes printing characters on a modified
display a tricky task. We must try to outwit the OS, positioning
our text according to where the OS thinks the text should be,
rather than where it actually is. To this end, the POSITION com-
mand will be useful.

First of all, however, we must move the left-hand margin of
the display all the way to the left, with this instruction:

5 POKE 82,0

(Hit RESET before adding this line.) Address 82, you may recall,
contains the position of the left-hand text margin, as used by the
OS.

Now, suppose that we wish to display the following title
screen:

DISPLAY LIST DEMO
by
CHRISTOPHER LAMPTON

with the first line in the Antic mode 7 portion of the screen, the
second line in the Antic mode 2 portion of the screen, and the
third line in the Antic mode 6 portion of the screen. Positioning
the first line isn’t difficult, as long as we remember that there are
only twenty characters on the mode 7 line. The line has a total of
seventeen characters. Thus, we will print it starting in position 1
of line 9. This can be accomplished with the following POSI-
TION statement:

110 POSITION 1,9
Add this line to your program. Then, add this line:
120 PRINT ““DISPLAY LIST DEMO"
Positioning the word “by” in the mode 2 portion of the

screen is trickier. Ordinarily, to center a two-letter word on a for-
ty-column line, we would start the word in horizontal position

(98]

19, and line 12 would be a good, central location between the
mode 7 and mode 9 lines. It would make sense, if the entire dis-
play were in Antic mode 2, to use the statement POSITION 19,12
to place this text where it belongs. However, bear in mind that the
OS has been thrown out of sync by the mode 7 line and we must
now position characters twenty spaces earlier than we normally
would. Thus, we must place this word in position 39 of the pre-
vious line, with the statements

130 POSITION 39,11
140 PRINT “by"

Add these lines to the program.

The mode 6 line, which is line 15 on the display, is also twen-
ty characters long. Positions on this line are still twenty charac-
ters out of sync, as far as the OS is concerned. The name
CHRISTOPHER LAMPTON is nineteen characters long, so we
might as well start it at the margin. However, the OS sees the
margin as twenty spaces before its actual position. Thus, we can
position the name at the margin (position Q) on line 15, with the
statements

150 POSITION 20,14
160 PRINT ““CHRISTOPHER LAMPTON"

Add these lines to the program, as well as the following line:
170 GOTO 170

and RUN the program. The three lines of text should be neatly
formatted in their respective mode lines.

Two more details would neaten up this display nicely. One is
to dispose of the cursor with this line:

15 POKE 752,1

Another is to change the background color of the modes 6 and 7
lines to the same background color as the mode 2 lines. This can
be done with the addition of this line:

17 SETCOLOR 4,9,4

Now that you have the entire program typed, RUN it.

This should give you some idea of what can be done with
custom display lists. Although it is certainly easier to have the OS
create a display list for you than to build one yourself, the custom
display list greatly increases the versatility of the machine. And

These pictures were created using the display list demo
program in the text. On the screen you would see yellow
letters, a blue background, and two black bands behind
the letters until you added line 17: SETCOLOR 4,9,4.

{100]

you need not restrict yourself to mixing text modes on the dis-
play. You can also mix bitmap modes with text modes, if that
should be useful.

However, some of the best graphic effects possible on an
Atari can be achieved using text graphics alone, that is, graphics
constructed from sequences of graphics characters. In the next
chapter we will see how character graphics can be taken a quan-
tum leap beyond the simple graphics we developed in Chapter
Two using the built-in Atari character set. We’ll take a look at the
mysteries and possibilities of redefinable character sets.

Suggested
Projects

1. Is it possible to write a display list that will put all
sixteen of the Antic display modes on the screen at one
time? If so, write a display list for such a mixed mode
display. Write a program to put this display list in mem-
ory and activate it.

2. Write a program that will reverse the normal mode 8
display and put the text window on the top of the display
and the high-resolution display underneath it.

3. Write a program that displays text in alternating lines
of OS mode 0 text and OS mode 1 text.

||HH|H|

CHARACTER

— SETS

There are 128 printable characters in the Atari character set.
Because some of these double as control characters, it is occasion-
ally necessary to press ESC (or to PRINT CHR$(27)) before
printing a character on the display, to inform the OS that we wish
to see the printable character rather than the control action. (See
Chapter One for a discussion of how this works.)

Maybe you’ve wondered, as you watched the Atari print the
alphabet and the various numerals, punctuation marks, and graph-
ics characters on the display, just how the OS knows what these
characters look like. How does it know that the letter A comprises
two opposing diagonal lines connected by a horizontal one, or that
the letter Y looks like a slingshot without the sling?

The answer is that the OS neither knows nor cares what any
of these characters look like. All it cares about is what their
ATASCII code numbers are. Once it has determined that it is
supposed to print ATASCII character 65 (the letter A) on the
video display, it converts that character code into the equivalent
screen code (see Chapter Five) and passes the buck to the graph-
ics chips, telling them to print the character represented by that
screen code at the requested position on the display.

CHARACTER MAPS

How do the graphics chips know what the character looks like?
The memory of the Atari contains pictures of those characters.

(103]

Pictures? Stored in the computer’s memory? How can that
be?

Well, we’ve already seen one method by which pictures can
be stored, pixel by pixel, in a series of memory locations: the
bitmap. And this is exactly how the pictures of the characters are
stored. A special portion of the Atari’s memory called the char-
acter ROM contains bitmapped pictures of every character that
the Atari can print on its display. The character ROM is located
between addresses 57344 and 58367. Every eight bytes in this
range, starting with the eight bytes from 57344 to 57351, contain
a bitmap for a single character.

You’ll recall that the simplest form of bitmap is one in which
the binary digit 1 represents a pixel in the foreground color and
the binary 0 digit represents a pixel in the background color. And
this is precisely how the character bitmaps work. Every byte
(eight bits) in the eight-byte bitmap represents a single line of
pixels in the character. Here, for instance, is the bitmap for the
letter A:

DECIMAL BINARY

0 00000000
24 00011000
60 00111100
102 01100110
102 01100110
126 01111110
102 01100110
0 00000000

Look closely at the binary representation of the bitmap.
Within these 0’s and 1’s you should be able to discern the struc-
ture of the letter A. Remember that the 1’s represent pixels in the
foreground color (i.e., the pixels in the body of the letter) and the
0’s represent pixels in the background color. The same bitmaps,
incidentally, are used in all of the Antic text modes; only the size
and shape of the pixels is changed from one mode to the next.

The character bitmaps are stored in ROM, so they cannot be
changed. However, it is possible to create our own set of character
bitmaps in RAM and tell the graphics chips to use these new
bitmaps instead of the ones in ROM. In this way, we can redefine
the character set, that is, design an entirely new set of characters
that look the way we want them to look.

REDEFINING CHARACTERS

Why would we do this? Well, the simplest reason is that we might
not like the way the current character set looks. Suppose, for

[104]

instance, that we have written a program that is more suited to an
old English-style character set than to the characters normally
displayed by the Atari. We could design a set of appropriate char-
acters to replace the standard ones.

However, the most common reason for redefining the char-
acter set is to create custom graphic characters. We can use these
custom characters to construct images that combine the appear-
ance of high resolution with the simplicity of character graphics.
Like high-resolution graphics, custom character graphics give us
control over individual pixels—the pixels within the bitmaps of
the characters. But once we have defined the individual pixels
within a character, we can use those characters in the same way
that we use ordinary character graphics, by printing them on the
display or poking them into video memory.

Here are the steps we must take to create a custom character
set:

1. Design the bitmaps for the new characters.

2. Place the bitmaps in the Atari’s RAM.

3. Tell the graphics chips where the new character set is
located.

The first of these steps is the most difficult. Designing char-
acter bitmaps can be a pretty tedious job. In general, we will not
want to redesign the entire character set. We might, for instance,
wish to leave the letters of the alphabet looking like they normally
do, and only redesign the graphics characters. Thus, we will want
to retain the normal bitmaps for part of the character set and alter
only a selected portion.

INSTALLING THE NEW SET

There are several methods we can use to place the new bitmaps in
memory. If we wish to retain portions of the old character set, we
should first copy the existing character set from ROM into RAM.
This can be done with a simple FOR-NEXT loop, like this:

10FOR 1 = 0TO 1023
20 POKE CHARSET +|, PEEK(57344+1)
30 NEXT I

where CHARSET equals the address at which we wish to place
the new character set. Once the old set has been copied into place,
we can modify those sections of it that need modification. In gen-
eral, we will store the bitmaps for the new characters inside our
BASIC program in DATA statements, and poke the bitmaps into
place with another FOR-NEXT loop.

[105]

Finally, we tell the graphics chips where the new character set
is located by dividing the address of the new character set by 256
and poking the result into location 756, like this:

POKE 756, CHARSET/256

Obviously, we must choose a location for the character set that is
evenly divisible by 256.

Before we can put the new character set in place, we must
protect a section of the Atari’s memory, so that the portion of
memory where we store the character set will not be used by
either the BASIC interpreter or the OS. As indicated in Chapter
Five, we do this by POKEing a new value into location 106,
where the OS stores the highest address that it can safely use:

POKE 106, PEEK(106)—4 : GRAPHICS 0

This takes the value already in 106 and reduces it by 4. This
will reserve 1,024 bytes at the top of your computer’s memory,
whether your computer contains 16K or 48K or 64K or whatever.
(Subtracting 1 from the value at 106, you will recall, lowers the
top of memory by 256 addresses.) The GRAPHICS 0 instruction
forces the OS to move video memory and the display list out of
the way of our reserved memory area. We can now determine a
safe address for CHARSET by multiplying the new value at 106
by 256, like this:

CHARSET = PEEK(106) * 256

This tells us where the top of memory is currently located. We
can build our character set upward from there.

Here, then, is a complete routine for moving the character set
from ROM to RAM:

10 POKE 106, PEEK(106)—4 : GRAPHICS 0
20 CHARSET = PEEK(106) * 256

30 FOR I = 0 TO 1023

40 POKE CHARSET +1, PEEK(57344+1)

50 NEXT I

60 POKE 756, CHARSET/256

RUN this program. There will be a momentary pause as the
FOR-NEXT loop moves the character set, and then the BASIC
“READY” message will appear. The first thing you should notice
happening is that, well, nothing happens. Everything should look
the same after this program executes as it did before, assuming
that the program was correctly typed. (If it was not typed correct-

(106]

ly, some very strange things may happen; if so, hit RESET and try
again.) Though you cannot tell it simply by looking at the display,
we are now using a character set based in RAM rather than in
ROM.

PLAYING WITH
THE CHARACTERS

The advantage of the RAM character set, as stated, is that we can
make changes in it. In the spirit of experimentation, then, let’s
make a change. Type this statement in the immediate mode:

POKE CHARSET, 255

and press RETURN. Whoa! What just happened? Suddenly the
video display filled with stripes!

To explain this effect, we need to have some idea of how the
character bitmaps are arranged. Because the graphics chips see
the character set as a sequence of screen codes, the bitmaps for
the characters are arranged in the order of their screen codes. If
you use the simple method we showed you in the last chapter for
deriving screen codes from ATASCII codes, you’ll see that the
first bitmap in the character set belongs to the character with
ATASCII code 32, which has a screen code of 0. This happens to
be the code for the blank space. Yes, there is actually a bitmap for
the blank space. It is made up of the binary numbers 00000000,
00000000, 00000000, 00000000, 00000000, 00000000, 00000000,
and 00000000, indicating that all of the pixels in the blank space
are set to the background color. By POKEing a value of 255 into
the first position in the bitmaps, we changed the first of these
binary numbers to 11111111, indicating that the first line of pix-
els in the blank space character should be set entirely to fore-
ground color. Thus, all of the blank spaces on the display—which
is to say all of the character positions without a character in
them—were changed by this single POKE. The effect is quite dra-
matic.

For a slightly different effect, type

POKE CHARSET,204

this POKES the binary number 11001100 into the first position
of the blank space bitmap, producing a sequence of dotted lines
across the display.

For an even more dramatic effect, type the following in the
immediate mode:

FOR I = 0TO 7 : POKE CHARSET+I, 204 : NEXT |

[107]

and press RETURN. Now the stripes run vertically instead of
horizontally. If you change the 204 to a 255 and enter this line
again, the display will be almost entirely whited out. To cancel
the effect and return the display to normal, change the 204 toa 0
or simply hit RESET, which will restore the normal character set.
The latter method is recommended, at least while you are work-
ing in the immediate mode.

THE CHARACTER EDITOR

Rather than learning the steps necessary to design your own cus-
tom character sets, you will now be presented with a program that
will automate the task. This character set editor is written in Atari
BASIC and features full-screen bitmap editing, as well as an
option to save your new character sets (along with the remaining
portions of the old set) to disk or tape. Because this is a complex
program and features some advanced programming techniques
not discussed in this book, most of its internal workings will not
be explained. Here is the listing:

1 REM
2 REM * .
3 REM * CHARACTER SET EDITOR -~
4 REM * *
5 REM
6 REM

10 GOSUB 5000 : REM INITIALIZE EDITOR

20 GOSUB 2900

30 ? CHR$(125) ;

35 GOSUB 7000

39 REM **MAIN PROGRAM LOOP

40 A — USR(PRTCHARS) : REM PRINT CHARSET

50 POSITION 5,21 : 2 “** ATARI CHARACTER EDITOR **";

60 POSITION 4,22 : ? “PRESS '‘OPTION’ FOR INSTRUCTIONS";

70 IF SHOWCHAR = 125 THEN COLOR 32 : PLOT 14,14 : PLOT 15,15 :
GOTO 80

75 COLOR SHOWCHAR : PLOT 14,14 : PLOT 15,15

80 COLOR SHOWCHAR+128 : PLOT 14,15 : PLOT 15,14

90 A — USR(BIGCHAR, CURCHAR) : REM DRAW CHARACTER

100 LOCATE COL,ROW,OLDCHAR

105 POSITION COL,ROW

109 REM WAIT FOR KEY PRESS

110 KEY = PEEK(764) : IF KEY = 255 THEN 117

115 ? CHR$(OLDCHAR) ; :COUNT = 19 : POKE 764,255 : POSITION
COL,ROW : GOTO 150

117 KEY = PEEK(53279) : IF KEY = 3 THEN 9700

[108]

The character editor program listed in this chapter will produce a
screen that looks something like this—without the treasure map
and the question mark. These are the inventions of the three young
artists who created the other original designs in this book.

119 REM BLINK CURSOR

120 COUNT = COUNT + 1:IF COUNT < 20 THEN 110

130 COUNT = 0: IF CURSOR = 0 THEN CURSOR = 1:?
CHR$(OLDCHAR + 128) ; : GOTO 105

140 CURSOR = 0: ? CHR$(OLDCHAR) ; : GOTO 105

150 IF KEY = 14 AND ROW > 11 THEN ROW = ROW — 1 : GOTO 100
160 IF KEY = 15 AND ROW < 18 THEN ROW = ROW + 1: GOTO 100
180 IF KEY = 6 AND COL > 4 THEN COL = COL—1 : GOTO 100

190 IF KEY = 7 AND COL < 11 THEN COL = COL+1 : GOTO 100

200 IF KEY <> 33 THEN 220

203 GOSUB 2000 : POKE BYTE, USR(BITAND,MAP,255-MASK) : ? ** ";
205 COL = COL+1:IFCOL > 11 THEN COL = 4 : ROW = ROW+1 :
IF ROW > 18 THEN ROW = 11

210 GOTO 100

220 IF KEY <> 34 THEN 230

222 GOSUB 2000 : POKE BYTE, USR(BITOR,MAP,MASK) : ? CHR$(20) ;
: GOTO 205

230 IF KEY <> 18 THEN 240

232 COLOUR = COLOUR + 1 :IF COLOUR > 15 THEN COLOUR = 0
235 GOSUB 2900 : GOTO 110

240 IF KEY <> 0 THEN 250

[109]

242 LUMINANCE = LUMINANCE + 2 : IF LUMINANCE > 14 THEN
LUMINANCE = 0

245 GOSUB 2900 : GOTO 110

250 IF KEY = 54 THEN GOSUB 2100 : GOTO 70

260 IF KEY = 55 THEN GOSUB 2200 : GOTO 70

270 IF KEY <> 142 THEN 280

272 GOSUB 2600 : FOR | = TARGET TO TARGET + 6

274 POKE 1,PEEK(I+1) : NEXT |

276 POKE TARGET+7,0 : GOTO 90

280 IF KEY <> 143 THEN 290

282 GOSUB 2600 : FOR | = TARGET + 7 TO TARGET + 1 STEP —1
284 POKE I,PEEK(I—1) : NEXT |

286 POKE TARGET,0 : GOTO 90

290 IF KEY <> 134 THEN 300

292 GOSUB 2600 : FOR | = TARGET TO TARGET + 7

294 POKE |, USR(BITAND,PEEK()*2,255) : NEXT |

296 GOTO 90

300 IF KEY <> 135 THEN 310

302 GOSUB 2600 : FOR | = TARGET TO TARGET + 7

304 POKE |,INT(PEEK(1)/2) : NEXT |

306 GOTO 90

310 IF KEY <> 40 THEN 320

312 GOSUB 2600 : TARGET 2 = TARGET + OFFSET: FOR| =0TO 7
314 POKE TARGET + |, PEEK(TARGET2+I) : NEXT | : GOTO 90

320 IF KEY <> 46 THEN 330

322 GOSUB 2700 : PRINT “DO YOU WANT TO RESTORE THE
ENTIRE"”

324 PRINT “CHARACTER SET (Y/N)"; : INPUT QUERY$

326 IF QUERY$ = "Y” THEN A = USR(MOVESET,OLDSET,NOOSET)
328 GOTO 2820

330 IF KEY <> 58 THEN 340

332 MODE = 0 : OPEN #1,8,0,"S:” : GOSUB 2900 : POKE 752,1

333 PRINT #1; “CURRENT COLOR: "; COLOUR:PRINT #1; “CURRENT
LUMINANCE: "’; LUMINANCE

334 PRINT #1; “ATASCII CODE: "'; SHOWCHAR

335 PRINT #1; “SCREEN CODE: "'; CURCHAR : PRINT #1;
“CHARACTER DATA: "

336 GOSUB 2600 : FOR | = TARGET TO TARGET+7 : PRINT #1;
PEEK(I); “, "; : NEXT |

337 PRINT #1; CHR$(155); : CLOSE #1 : IF MODE = 0 THEN GOTO
2800

338 TRAP 65535 : GOTO 110

340 IF KEY = 10 THEN MODE = 1 : TRAP 9500 : OPEN #1,8,0, “P:" :
GOTO 333

350 IF KEY <> 62 THEN 370

352 TRAP 9500 : GOSUB 2700 : ? “SAVE TO <C>ASSETTE OR
<D>ISK"; : INPUT QUERY$

[110]

354 IF QUERY$ = “C" THEN OPEN #1,8,0,"C:" : GOTO 360

356 IF QUERY$ <> D" THEN 358

357 27 “FILENAME""; : INPUT TEMP$: NAME$(3,14) = TEMP$: OPEN
#1,8,0,NAMES : GOTO 360

358 TRAP 65535 : GOTO 2820

360 FOR | = 0 TO 1023 : PUT #1,PEEK(NOOSET+1) : NEXT | : CLOSE
#1: GOTO 358

370 IF KEY <> 61 THEN 390

372 TRAP 9500 : GOSUB 2700 : ? “LOAD FROM <C>ASSETTE OR
<D>ISK"; : INPUT QUERY$

374 IF QUERY$ = C" THEN OPEN #1,4,0,“C:"" : GOTO 380

376 IF QUERY$ <> “D"” THEN 378

377 2 “FILENAME"; : INPUT TEMP$: NAME$(3,14) = TEMP$: OPEN
#1,4,0 NAMES : GOTO 380

378 TRAP 65535 : GOTO 2820

380 FOR | = 0 TO 1023 : GET #1,IN : POKE NOOSET+1,IN : NEXT | :
CLOSE #1 : GOTO 378

390 IF KEY <> 118, THEN 400

392 GOSUB 2600 : FOR | = TARGET TO TARGET + 7 : POKE 1,0 :
NEXT | : GOTO 70

400 IF KEY = 5 THEN GOTO 1000

999 GOTO 105

1000 ROW = 11 : COL = 18 : POKE 752,0

1005 POSITION COL—1,ROW : ? CHR$(31);

1010 GET #2,KEY

1020 IF KEY = 28 AND ROW > 11 THEN ROW = ROW—1 : ?
CHRS$(KEY);

1030 IF KEY = 29 AND ROW < 18 THEN ROW = ROW+1: ?
CHR$(KEY);

1040 IF KEY = 30 AND COL > 18 THEN COL = COL—1: ?
CHRS$(KEY);

1050 IF KEY = 31 AND COL < 35 THEN COL = COL+1 : ?
CHRS$(KEY);

1060 IF KEY <> 155 THEN 1070

1065 LOCATE COL,ROW,0LDCHAR : POKE 752,1 : IF OLDCHAR>127
THEN ? CHR$(OLDCHAR —128) : GOTO 1068

1067 PRINT CHR$(OLDCHAR +128)

1068 COL = 4 : ROW = 11 : GOTO 100

1070 IF KEY < 27 OR (KEY > 31 AND KEY < 125) OR (KEY > 127
AND KEY < 155) OR (KEY > 159 AND KEY < 253) THEN GOTO 1090
1080 GOTO 1005

1090 PRINT CHR$(KEY); : COL = COL+1 : IF COL > 35 THEN

COL = 18 : ROW = ROW+1 : IF ROW > 18 THEN ROW = 11

1100 GOTO 1005

2000 BYTE = NOOSET + CURCHAR * 8 + ROW — 11 : BIT =

COL — 4 : MASK = 2*(7—BIT) : MAP = PEEK(BYTE) : RETURN

[111]

2100 CURCHAR = CURCHAR — 1 : IF CURCHAR < 0 THEN
CURCHAR = 127

2110 GOSUB 2500 : RETURN

2200 CURCHAR = CURCHAR + 1 : IF CURCHAR > 127 THEN
CURCHAR = 0

2210 GOSUB 2500 : RETURN

2300 CURCHAR = CURCHAR — 32 : IF CURCHAR < 0 THEN
CURCHAR = CURCHAR + 128

2310 GOSUB 2500 : RETURN

2400 CURCHAR = CURCHAR + 32 : IF CURCHAR > 127 THEN
CURCHAR = CURCHAR — 128

2410 GOSUB 2500 : RETURN

2500 IF (CURCHAR > = 0) AND (CURCHAR < 64) THEN SHOWCHAR
= CURCHAR + 32 : RETURN

2510 IF (CURCHAR > 63) AND (CURCHAR < 96) THEN SHOWCHAR
= CURCHAR — 64 : RETURN

2520 SHOWCHAR = CURCHAR : RETURN

2600 TARGET = NOOSET + CURCHAR * 8 : RETURN

2700 ? CHR$(125); : POKE 756,INT(OLDSET/256) : RETURN

2800 ? :? “PRESS RETURN TO CONTINUE"

2810 K = PEEK(764) : IF K <> 12 THEN 2810

2820 ? CHR$(125) ; : POKE 756,INT(NOOSET/256) : GOTO 35

2900 SETCOLOR 2,COLOUR,LUMINANCE : SETCOLOR 4,
COLOUR,LUMINANCE : RETURN

5000 GRAPHICS 0 : POKE 752,1 : OPEN #2,4,0,"K:"

5010 POSITION 9,10 : ? “ATARI CHARACTER EDITOR"

5020 POSITION 12,11 : 2 “NOW INITIALIZING"

5030 DIM HEX$(2), HEX1$(1), HEX2$(1), QUERY$(1),

NAMES$(14), TEMP$(12)

5035 NAME$(1,2) = “D:"

5040 PRTCHARS = 1536 : BIGCHAR = 1586 : MOVESET = 1698 :
BITAND = 1730 : BITOR = 1746

5050 CURCHAR = 1 : SHOWCHAR = 33 : COLOUR = 10 :
LUMINANCE = 0

5060 OLDSET = PEEK(756)*256 : NOOSET = (PEEK(106)—4)*256 :
OFFSET = OLDSET — NOOSET

5070 COL = 4 : ROW = 11

5100 GOSUB 9000 : REM POKE ML ROUTINES

5110 POKE 106,PEEK(106)—4 : GRAPHICS 0 : POKE 752,1 : REM SET
TOP OF MEMORY

5120 A=USR(MOVESET,OLDSET,NOOSET) : POKE
756,INT(NOOSET/256)

5999 RETURN

6999 REM ** DRAW BORDERS ON SCREEN

7000 COLOR 17 : PLOT 3,0

7010 COLOR 18 : PLOT 4,0 : DRAWTO 35,0

[112]

7020 COLOR 5 : PLOT 36,0

7030 COLOR 124 : PLOT 3,1 : DRAWTO 3,8 : PLOT 36,1 :
DRAWTO 36,8

7040 COLOR 26 : PLOT 3,9

7050 COLOR 18 : PLOT 4,9 : DRAWTO 35,9

7060 COLOR 3 : PLOT 36,9

7070 COLOR 17 : PLOT 3,10

7080 COLOR 18 : PLOT 4,10 : DRAWTO 11,10

7090 COLOR 5 : PLOT 12,10

7100 COLOR 124 : PLOT 3,11 : DRAWTO 3,18 : PLOT 12,11 :
DRAWTO 12,18

7110 COLOR 26 : PLOT 3,19

7120 COLOR 18 : PLOT 4,19 : DRAWTO 11,19

7130 COLOR 3 : PLOT 12,19

7140 COLOR 17 : PLOT 17,10

7150 COLOR 18 : PLOT 18,10 : DRAWTO 35,10

7160 COLOR 5 : PLOT 36,10

7170 COLOR 124 : PLOT 17,11 : DRAWTO 17,18 : PLOT 36,11 :
DRAWTO 36,18

7180 COLOR 26 : PLOT 17,19

7190 COLOR 18 : PLOT 18,19 : DRAWTO 35,19

7200 COLOR 3 : PLOT 36,19

7999 RETURN

8800 HEX1$ = HEX$(1,1) : HEX2$ = HEX$(2)

8810 DEC1 = ASC(HEX1$)—48 : IF DEC1 > 9 THEN DEC1 =
DEC1 — 7

8820 DEC 2 = ASC(HEX2$)—48 : IF DEC2 > 9 THEN DEC2 =
DEC2 — 7

8830 DEC — DEC1 * 16 + DEC2 : RETURN

9000 FOR | = 1536 TO 1761

9010 READ HEX$: GOSUB 8800 : POKE 1,DEC

9020 NEXT |

9030 RETURN

9500 CLOSE #1 : GOSUB 2700 : ERROR = PEEK(195)

9510 IF ERROR = 138 OR ERROR = 130 THEN ? “DEVICE DOES NOT
RESPOND" : GOTO 2800

9530 IF ERROR = 136 THEN ? “BAD FILE" : GOTO 2800

9540 IF ERROR = 165 THEN ? “BAD FILE NAME” : GOTO 2800
9550 IF ERROR = 162 THEN ? “DISK FULL" : GOTO 2800

9560 IF ERROR = 167 THEN ? “FILE LOCKED" : GOTO 2800
9570 IF ERROR = 170 THEN ? “FILE NOT FOUND" : GOTO 2800
9580 IF ERROR = 180 THEN ? “DIRECTORY FULL" : GOTO 2800
9590 ? “ERROR NUMBER ";ERROR;"* HAS OCCURRED" : GOTO 2800
9700 GOSUB 2700 : POSITION 13,0 : 2 “INSTRUCTIONS” : ?
9710 ? “ARROW KEYS (UNSHIFTED) : MOVE CURSOR"

9720 ? “CONTROL/ARROW KEYS: MOVE CHARCTER"

9730 ? “CLEAR: ERASE CHARACTER”

[113]

9740 ? “.: ADD DOT SPACE: ERASE DOT"

9750 ? " <: PREV CHARACTER >: NEXT CHARACTER"
9760 ? “D: DATA TO SCREEN P: DATA TO PRINTER"
9770 ? *'C: CHANGE COLOR L: CHANGE LUMINANCE"
9780 ? *'S: SAVE CHARSET G: GET OLD CHARSET"
9790 ? “R: RESTORE CHAR W: RESTORE CHAR SET”

9800 ? “K: SKETCH MODE"

9850 GOTO 2800

10000 REM ** MACHINE LANGUAGE ROUTINE
10010 REM ** TO DISPLAY CHARACTER SET
10020 DATA 18, AS, 58, 69, 2C, 85, CB, A5
10030 DATA 59, 69, 00, 85, CC, A9, 00, 85
10040 DATA CD, A2, 08, AQ, 00, A5, CD, 91
10050 DATA CB, C8, ES6, CD, CO0, 20, DO, F5
10060 DATA A9, 28, 18, 65, CB, 85, CB, A9
10070 DATA 00, 65, CC, 85, CC, CA, DO, ES3, 68, 60
10075 REM **MACHINE LANGUAGE ROUTINE
10077 REM **TO DRAW ENLARGED CHAR
10080 DATA 68, 68, AD, F4, 02, 85, CC, A9, 00, 85
10090 DATA CB, 85, CD, 68, 0A, 26, CD, 0A
10100 DATA 26, CD, 0A, 26, CD, 18, 65, CB
10110 DATA 85, CB, A5, CD, 65, CC, 85, CC
10120 DATA A5, 58, 85, CD, A5, 59, 85

10130 DATA CE, 18, A9, BC, 65, CD, 85, CD
10140 DATA A9, 01, 65, CE, 85, CE, A0, 00
10150 DATA A9, 80, 85, CF, B1, CB, 84, D1
10160 DATA A0, 00, 25, CF, FO, 05, A9, 54, 38, BO, 02, A9, 00
10170 DATA 91, CD, A4, D1, E6, CD, DO, 02
10180 DATA ES, CE, 46, CF, 90, E1, A9, 20
10190 DATA 18, 65, CD, 85, CD, A9, 00, 65
10200 DATA CE, 85, CE, C8, 98, C9, 08, DO
10210 DATA CA, 60

10220 REM ""MACHINE LANGUAGE ROUTINE
10230 REM **TO MOVE CHARACTER SET
10240 REM **FROM ROM TO RAM

10250 DATA 68, 68, 85, CC, 68, 85, CB, 68
10260 DATA 85, CE, 68, 85, CD, A2, 04, AO
10270 DATA 00, B1, CB, 91, CD, C8, DO, F9
10280 DATA ES6, CE, E6, CC, CA, DO, F2, 60
10290 REM "*"MACHINE LANGUAGE ROUTINE
10300 REM "*TO PERFORM BITWISE AND
10310 DATA 68, 68, 68, 85, CB, 68, 68, 25
10320 DATA CB, 85, D4, A9, 00, 85, D5, 60
10330 REM "*"MACHINE LANGUAGE ROUTINE
10340 REM **'TO PERFORM BITWISE OR
10350 DATA 68, 68, 68, 85, CB, 68, 68, 05
10360 DATA CB, 85, D4, A8, 00, 85, D5, 60

[114]

When you RUN this program, you will be presented (after a
fairly lengthy initialization period) with a display that looks like
the one on page 108. At the top of the screen, inside a large rect-
angle, is the complete Atari character set, in order according to
screen code. Below this are two more rectangles, the one to the
left containing an expanded image of the exclamation point char-
acter (screen code 1) and the one to the right containing a consid-
erable amount of blank space. Between these two rectangles, four
normal-sized exclamation points have been printed in a small
square, two of them reversed and two of them normal. In the
upper left-hand comer of the left-hand rectangle, a cursor is
blinking.

The expanded exclamation point in the left-hand rectangle is
based on the bitmap of the character as it is stored in memory.
The circles that make up the body of the exclamation point are
the 1’s in the bitmap and the blank spaces surrounding the excla-
mation point are the 0’s.

At the bottom of the display, you should see the message
“PRESS ‘OPTION’ FOR INSTRUCTIONS”. This refers to the
OPTION key on the right-hand side of the keyboard. Press this
key and you will be presented with this menu of commands:

INSTRUCTIONS
ARROW KEYS (UNSHIFTED): MOVE CURSOR

CONTROL/ARROW KEYS: MOVE CHARACTER
CLEAR: ERASE CHARACTER

.. ADD DOT SPACE: ERASE DOT

<: PREV CHARACTER > : NEXT CHARACTER
D: DATA TO SCREEN P: DATA TO PRINTER

C: CHANGE COLOR L: CHANGE LUMINANCE
S: SAVE CHARSET G: GET OLD CHARSET
R: RESTORE CHAR W: RESTORE CHAR SET

K: SKETCH MODE

Press the RETURN key and you will be returned to the char-
acter set display. Using the commands shown on the instruction
menu, you can edit the enlarged character in the left-hand rectan-
gle. For instance, pressing the period (“.””) key, you can add new
pixels to the character, at the position in the bitmap directly
underneath the flashing cursor. By pressing the spacebar, you can
erase the pixels underneath the cursor.

Pressing one of the four cursor arrow keys while znot holding
down any other keys will move the cursor around the bitmap.
Pressing the cursor arrow keys while holding down the CON-
TROL key will move the character itself. Pressing the CON-

[115]

TROL-up arrow, for instance, will shift every line of the arrow
character up one line, erasing the topmost line and adding a blank
line at the bottom.

If you do not wish to edit the exclamation point character,
pressing the > key (on the top row of the keyboard) will display
an enlarged image of the next character in the character set. Hold
this key down continuously to move rapidly through the entire
character set. To move through the character set in the opposite
direction, hold down the < key. As the enlarged image of each
character appears, four normal-sized copies of the character will
be automatically displayed between the two lower rectangles.

To see a copy of the eight numbers that constitute the bitmap
for the current character, press the D key. This displays the bit-
map information, plus the current color and luminance of the
display, and the ATASCII and screen codes of the current char-
acter. If you have a printer attached to your computer, you can
print this information by pressing the P key instead of the D
key.

To change the color of the display, press the C key. By hold-
ing down this key continuously, you can cycle through all sixteen
colors. Similarly, the L key will cycle through all eight lumi-
nances.

The S key will save the entire custom character set to either
tape or disk, directly from the Atari’s memory. When you choose
this option, you will be asked whether you wish to save to
<C>ASSETTE or <D>ISK. Press C for cassette or D for disk,
and press RETURN. (Press RETURN by itself to return to the
character set display.) If you choose disk, you will be further
prompted for a filename. Use any valid Atarni filename, as defined
in your Atari disk manual.

To load a previously saved character set from tape or disk,
use the L key. Once again, you will be prompted for a C ora D
and a filename if you choose the latter.

The R key will restore the current character to its normal
form. The W key will restore the entire character set to its normal
form. If you request the latter option, you will be asked to verify
the request, since the accidental restoration of the character set
could destroy hours (or at least minutes) of work.

Pressing the K key will place you in sketchpad mode. The
cursor will disappear from the left-hand rectangle and reappear in
the right-hand rectangle. This is the “sketch pad.” You may now
type characters in a manner that is quite similar to the normal
BASIC editing mode. Pressing CONTROL and a cursor arrow
key will move the cursor. Pressing a key that normally produces a
character will produce that character. Pressing RETURN will
return you to the normal character editing mode. Use the sketch-

f116]

pad mode to try out combinations of the characters that you have
created in the character editing mode.

USING THE DATA

To use the character data printed by the D command, you will
need to write a loop that will read that data from a DATA state-
ment and POKE it into the proper eight bytes of the character
set memory. Here is a routine that will do exactly that, if
SCRNCODE is equal to the screen code of the character to be
modified, CHARSET is equal to the location of the new character
set, and DATALINE is equal to the number of the line with the
DATA statement containing the character DATA:

100 RESTORE DATALINE: FORI =0TO 7
110 READ BYTE : POKE CHARSET+SCRNCODE"8, BYTE
120 NEXT |

This routine assumes that the character data is the first eight
numbers in the DATA statement on line DATALINE.,

With the aid of the character set editor, however, it may not
be necessary to place character data in DATA statements within
your program. Instead, you can simply save an entire character
set to disk or tape and write a routine in your program that will
load the set back into memory. Bear in mind that the character
set is stored on disk or tape as a sequence of 1,024 bytes, which
can be loaded back into memory with a simple input loop that
pokes the bytes into place.

Here is an example of such a routine for a character set on
tape, where CHARSET is, once again, the address where you
wish to place the modified character set:

1000 OPEN #1, 4, 0, "C:"

1010 FOR | = 0 TO 1023

1020 GET #1, IN : POKE CHARSET+I, IN : NEXT |
1030 CLOSE #1

This routine expects to find a tape already in the cassette record-
er, with the character set file recorded on it.

Here is a version of the routine modified to work with a disk
drive:

1000 OPEN #1,4,0,"D:FILENAME”

1010 FOR | = 0 TO 1023

1020 GET#1,IN : POKE CHARSET +I, IN : NEXT |
1030 CLOSE #1

[117]

The word FILENAME in line 1000 should be replaced by the
name of the file in which you have saved your character set. The
disk containing this file must be in drive 1 at the time this pro-
gram is executed. If the disk will be in drive 2, the letter D in front
of the file name should be changed to D2.

CUSTOM GRAPHICS CHARACTERS

Creating graphics with a redefined character set is not difficult. In
fact, it is exactly like working with the character graphics
described earlier, only now you can create your own characters,
rather than relying on Atari’s. As soon as you POKE the new
character set address, divided by 256, into address 756 and lower
the top of memory, you can use the new set exactly as you would
the built-in set, with the text mode commands that work with
standard characters. Here is the procedure for creating custom
graphics:

1. Design the new set using the character editor (easy) or graph
paper (harder).

2. Create the bitmaps for that character set. If you are using graph
paper, you will need to create the bitmaps by hand. Every row of
eight pixels in the character must be translated into a single bina-
ry number, with foreground color pixels represented by 1s and
background color pixels represented by Os. You must then trans-
late the binary numbers into decimal numbers—not an easy task,
and one that we will not explain further in this book. If you use
the character editor, this translation will be performed for you
automatically. By using the D command in the editor, you can
call up a decimal translation of the bitmap of the character cur-
rently displayed for editing. The S command enables you to save
bitmaps for all characters in the set in a file on a disk or tape.

3. Put the bitmaps back into the Atari’s memory. When you are
ready to run a program that uses the custom character set, you
will need to put the bitmaps for that character set back into the
Atari’s RAM. There are two common ways of doing this. You can
move the existing bitmaps into RAM, then alter selected charac-
ters with bitmaps that you have placed in DATA statements in
your program, using the READ and POKE commands to move
the bitmaps into RAM starting at any available address divisible
by 256, as described above. If you have used the editor to save
entire bitmaps on disk or tape, you can read those bitmaps back
off the disk and into RAM using the subroutines described
above.

Suggested
Projects

|. Books and newspapers have their own ‘“character
sets,” much as the Atari does; that is, they use a distinc-
tive style of type in which each letter of the alphabet or
other symbol has its own unique design. Examine some
of these character sets, and use the character set editor to
create your own Atari character set in imitation of these
designs. Look through a number of books, magazines and
other sources to find particularly striking character
designs and adapt the best features of these designs to
your original character set.

2. Create an original graphics character set for the Atari,
from which you can piece together detailed drawings of
houses, animals, people, and other pictorial designs.

1]

ERPILOGUE

Atari graphics is a big subject. We haven’t yet said everything
there is to say about it. For instance, we lack the space here to
discuss Player-Missile graphics, an elaborate animation system
that allows the Atari programmer to create movable graphic
images that are completely separate from the images in video
memory and that can be moved around the display through a
series of PEEK and POKE instructions. Be warned, however, that
Player-Missile graphics cannot be fully utilized from an Atari
BASIC program and requires machine language, or a faster high-
level language, for full effect.

We also haven’t mentioned display list interrupts, a program-
ming trick that can be used to squeeze extra colors onto an Atari
bitmap display. In fact, display list interrupts can be used to dis-
play all 128 (or even 256) Atari colors at one time. This technique
also requires a knowledge of machine language.

In this book, you have gotten a glimpse of what Atari graph-
ics can do, and a working knowledge of the techniques required to
create a graphics program. It is now up to you to decide what you
want to do with this knowledge. Any program can benefit from
graphics, if only in the creation of an impressive title screen. For
instance, while a program loads from the Atari disk drive it is
sometimes useful to draw a picture on the display to keep the user
company, or prevent him or her from getting bored.

Have fun!

BIBLIOGRAPHY

Your Atari Computer by Lon Poole with Martin McNiff & Steven
Cook. OSBORNE/McGraw-Hill, Berkeley, CA, 1982. An excel-
lent reference book on general programming in Atari BASIC.
Includes two chapters on graphics programming, including dis-
cussions of both OS and Antic/GTIA graphics.

Compute!’s First/Second/Third Book of Atari. Compute! Publica-
tions, Inc., Greensboro, NC. Three collections of articles, many
concerned with graphics programming,.

Compute!’s First/Second Book of Atari Graphics. Compute! Pub-
lications, Inc., Greensboro, NC. Two collections of articles spe-
cifically relating to graphics programming techniques on Atari
computers.

Atari Color Graphics: A Beginner’s Workbook by Joseph W. Col-
lins. Arrays, Inc., Los Angeles, CA, 1984. A general introduction
to OS supported graphics on the Atari, notable for its detailed
examinations of each of the OS graphics modes.

De Re Atari. Atari Inc., 1981. The definitive collection of essays
on advanced Atari programming techniques. Available directly
from Atari.

INDEX

Action keys, 9

American Standard Code for
Information Interchange,
11

Animation, 58-70

Antic, 2, 4, 22, 73, 76, 86, 89-
96

Arcade game programs, 58

Arrows, 9

ASC function, 11, 13

ASCI], 11

ATASCII code, 11, 13, 49-52,
71, 77-78, 102, 106

Bar chart, 52-55

BASIC interpreter, 4, 7, 28,
76-77, 105

Bitmap memory, 80-82

Bitmap modes, 6, 18, 20-34,
48, 80, 92-93, 100

BREAK key, 17, 27-29, 46,
64, 81

CAPS, 7

Central processing unit, 75

Character editor, 107-116

Character set, 10-13, 102-117

CHRS$ function, 13

Color, 2, 5-6, 20, 37-55, 99

COLOR statement, 23-24,
38-39, 47-50

CPU, 75

CTIA, 2,6

Current display mode num-
ber, 83

DATALINE, 116
Display list, §6-100
DRAWTO statement, 25-29

FILENAME, 117
Graphics characters, 8-9

Graphics mode 7, 21-22
GTIA modes, 44-46

[122]
Hardware, 2, 4

INT function, 27
Interlace, 87

Joystick, 65-69
Keyboard, 7-8

Large text mode, 13-16
LOCATE statement, 62-63

Machine language, 75
Magnetic field, 87

Memory, 73-84, 90, 103-105

Mode lines, 86-89
Numeric expression, 6
Overscan, 87

PacMan, 3
Paddle, 68, 72
PEEK function, 75-76
Phosphors, 87
Pictorial element, 5
Pinball Construction Set, 3
Ping-Pong, 66-72
Pixel, 5

changing, 31-32

matrix, 33-34

moving, 60-62
Player-Missile graphics, 119
Playfield, 68
PLOT statement, 22-24
POKE statement, 75-77

Rainbow mode, 46-47
RAM, 76, 82, 103-106
RAMTOP, 82-83

Raster scan lines, 87
ROM, 76, 103-106
Rossi’s Iron Law, 86, 126

Scaling, 29-30
Scan lines, 87

‘SETCOLOR statement, 10,

38-40, 42-44, 46-48, 51,
53, 98-99
Sketchpad mode, 9
Software, 2, 4
SOUND statement, 69-70
Stairstep, 7, 25, 32
STICK function, 65-66
STRIG(X) function, 71-72

Text modes, 5-18
Translation, 29-30

XIO statement, 30-31

ABOUT THE AUTHOR

Christopher Lampton is the author of
more than twenty books for Franklin
Watts, including a number of popular First
Book and Impact titles. He has written all
the books on computer languages and
graphics in Watts’ Computer Literacy
Skills series.

Chris first became a computer enthusi-
ast when he purchased a Radio Shack
computer to use for word processing. He
now owns eight computers.

Chris has a degree in radio and televi-
sion broadcasting and lives right outside
Washington, D.C. In addition to his books
in the area of science and technology, he
has written four science-fiction novels.

FRANKLIN WATTS
387 PARK AVENUE SOUTH
NEW YORK, NEW YORK 10016

JACKET DESIGN BY GINGER GILES

PRINTED IN THE UNITED STATES OF
AMERICA BY MOFFA PRESS, INC.

FRANKLIN WATTS
COMPUTER LITERACY
SKILLS SERIES

ADVANCED BASIC
BASIC FOR BEGINNERS
COBOL FOR BEGINNERS
FORTH FOR BEGINNERS
FORTRAN FOR BEGINNERS

GRAPHICS AND ANIMATION
ON THE APPLE

GRAPHICS AND ANIMATION
ON THE ATARI

GRAPHICS AND ANIMATION
ON THE COMMODORE 64

GRAPHICS AND ANIMATION
ON THE TRS-80

PASCAL FOR BEGINNERS
PILOT FOR BEGINNERS
6502 ASSEMBLY-LANGUAGE PROGRAMMING
Z80 ASSEMBLY-LANGUAGE PROGRAMMING

531-10144-4

